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Abstract 
 

In this paper a modeling process is presented for operational flood forecasting and mapping that 
integrates remote sensing for expected rainfall estimation, hydrological model (MIKE 11) and GIS for flood 
modeling. Based on a 1D cloud model, a quantitative precipitation forecast (QPF) using NOAA AVHRR and 
GMS data is established by relating cloud top temperature (CTT) below 235oK and cloud top reflectance 
(CTR) above 28% at cloud heights above 12000m for tropical rainfall. Mesoscale rainfall is determined in the 
range of 3-12 mm/hr to develop a grid based rainfall intensity map. Langat River Basin (about 2012km2) in 
Malaysia with the flood event of 2000 is used as a case study to test the model. Basin parameters were 
calibrated for rainfall runoff using the NAM model based on observed rainfall for the flood of 2000.  
Alternatively the modeled QPF rainfall estimate was also used for rainfall runoff. The results of both runoffs 
were used to generate comparable flood polygons for the flood event in GIS. Results show similarities in the 
runoff hydrographs for both rainfall inputs to the runoff model. In using AVHRR satellite data rainfall 
estimates can be obtained based on the QPF model in advance of the actual rainfall, the study thus provides the 
framework for an operational flood forecasting before the actual flood event.  
Keywords: NOAA AVHRR, QPF, Rainfall runoff, GIS, Flood Modeling 
 

Introduction 
 

Flooding induced by storm events is a major concern in many regions of the 
world (Horritt and Bates, 2002; Lee and Lee, 2003; Hudson and Colditz, 2003). 
Malaysia is not an exception as it lies in the path of north east and south west monsoon 
that affects the region. The extreme weather in recent years has demonstrated the 
necessity for reliable flood models, as emergency managers and city planners begin to 
realize the importance of advance warning in severe storm situations. As globally 
averaged temperatures increase, the potential for severe to extreme weather events 
increases (Becker and Grunewald, 2003; WMO, 2003). Therefore, global warming has 
brought further urgency to the prediction of flood levels and damages. 

Flood forecasting and modeling has greatly improved in recent years with the 
advent of geographic information systems (GIS), radar-based rainfall estimation using 
next generation radar (NEXRAD), high-resolution digital elevation models (DEMs) and 
distributed hydrologic models (Bedient et al., 2003). However issues that limit the 
accuracy of some flood forecasts include errors associated with the radar rainfall input  
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(Vieux and Bedient, 1998; Borga, 2002; Grassotti et al., 2003; Jayakrishnan et al., 2004), 
realism of model structure (Horritt and Bates, 2002), availability of distributed data to 
parameterize and validate the models (Bates, 2004), and scaling theory to relate point 
measurements to grid averaged quantities predicted by the models (Beven, 2002; Bates, 
2004). In addition and perhaps most importantly, the time required to convert the 
NEXRAD rainfall time series to a flood inundation map is critical in practical 
applications, especially during the extreme storm events that demand a highly efficient 
and timely prediction capability. 

Despite the overall progress in flood modeling research, flooding continues in 
many areas of the world, including Malaysia where severe yearly monsoon rains results 
in flash floods that strike quickly and in most cases without warning. According to 
Keizrul and Chong (2002), these extreme monsoon phenomena are the most destructive 
natural disaster afflicting Malaysia in terms of the cost, damage to property and the area 
extent. Flooding is usually observed before any warning can be issued and usually 
persons and property have been affected before the warning reaches them.  

Accurate and timely early warning of monsoon floods and tropical storms are 
instrumental to the reduction of flood impacts. Forecasting these impending floods 
requires adequate meteorological inputs such as real-time distributed rainfall from 
quantitative precipitation forecasts (QPF). However, since quantitative estimates of local 
rainfall are mostly unavailable before the actual rain event, it seem most practical to 
derive expected precipitation  from the now commonly available satellite data  as input 
to flood forecast. The need therefore arises for the close coupling of meteorological 
forecasts to hydrological models to improve flood forecasts and early warning in 
Malaysia. The problem however is to try to make estimates of precipitation from satellite 
data before the actual rainfall event and in areas where there are no monitoring stations.  

Generally, the approaches that emerge for estimating precipitating amounts 
include point measurements (Rain-gauge GTS data), precipitation radar (NEXRAD) and 
satellite-based (NOAA-AVHRR and GOES) estimation techniques. Areal averages 
derived from rain-gauge observations suffer from limitations due to sampling but also 
because gauges are usually distributed with a spatial bias toward populated areas and 
against areas with high elevation and/or slope (Xie and Arkin 1998). An alternative 
ground-based estimation method is the use of precipitation radar but this is not always 
feasible in terms of cost and the lack of infrastructures (Grimes 2003). The again, their 
success is limited by the indirect nature of the relationship of the observations to 
precipitation and the fact that they require calibration using guage data. According to 
Grimes (2003), an answer to these limitations is likely to come from satellite remote 
sensing whose potential for estimating rainfall has been evident since its early days: the 
data are inexpensive, provide complete area coverage and are available in real time. 

Satellite remote sensing methods that are appropriate for operational precipitation 
estimation usually rely on empirical relationships of metrological satellite (NOAA-
AVHRR, GOES, Meteosat and GMS) data thermal infra-red (TIR) and passive 
microwave imagery. For a review of   TIR precipitation estimation techniques see 
(Grimes et al. 1999; Todd et al. 1995; Xie and Arkin 1997). A number of studies exist 
that discusses various TIR methods, most of which argue its effective application in the 
tropical regions. Based on the classification of Barrett and Martin (1981), cloud based 
rainfall estimation methods from meteorological satellite data are divided into four main 
categories, broadly including the cloud life history, bispectral, cloud-indexing, and cloud  
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model-based techniques. Each method stresses a particular aspect of the sensing of cloud 
physical properties using satellite imagery. Details of these methods are given by 
Griffith et al. (1978), Levizzani et al. (1990) and Scofield and Naimeng, (1994). 

The two methods of cloud based rainfall estimation that come to mind are the 
cloud indexing and cloud model-based techniques that are combined in the model 
presented in this paper. The cloud indexing assigns rainfall levels to each cloud type 
identified in the satellite imagery on the basis of a high correlation between radar-
estimated precipitation and fraction of the area colder than 235 K in the IR. This model 
was initially developed for NOAA-AVHRR data and later adopted for Geostationary 
images. The scheme, named GOES Precipitation Index (GPI) (Arkin and Meisner, 
1987), assigns these areas a constant rainrate of 3 mm/hr, which is appropriate for 
tropical precipitation over 2.5° × 2.5° areas. Raining days are identified from the 
occurrence of IR brightness temperature (TB) below a threshold at given location.  
Details of this method are given by Arkin and Janowiak (1991), Ba and Nicholson 
(1998) and Todd et al. (1995, 1999). 

The cloud model techniques introduce cloud physics into the retrieval process for 
a quantitative improvement, and provide better physical description of the rain formation 
processes. The technique also introduces a cumulus convection parameterization that 
relates fractional cloud cover to rain-rate. Another of the cloud model methods is the 
convective stratiform technique (CST) which is a 1D model which relates cloud top 
temperature to rain rate and rain area. Local minima in the IR TB are sought and screened 
to eliminate thin, non-precipitating cirrus. Slope parameter S is calculated for each 
temperature minimum T min and T 6−1 is the average temperature of the six closest cloud 
pixels in the image, if the T min is located at (i,j). Extensive discussions of these 
techniques have been presented in Reudenbach et al. (2001), Bendix, (1997, 2000) and 
Anagnostou et al., (1999).  

Generally, most of the studies focus on interpreting precipitation on the 
continental and global scale, emphasizing the need for similar studies over small to 
regional scale area applications in support of hydrological processes such as surface 
runoff and flood forecast. The aim of this study is therefore to estimate rainfall from 
satellite data with a modification and model combination of the cloud indexing and 
model based techniques, which from now will be referred in the paper as QPF model. 
Rainfall is to be estimated at a mesoscale level as input to the operational flood forecast 
before the actual flood event. The objectives of the study are:- 
1. To develop the framework for operational flood forecasting by integrating remote 
        sensing, hydrological modeling and GIS 
2. To estimate mesoscale grid precipitation through a QPF process using real-time  
        NOAA AVHRR and geostationary (GMS-5) data and assimilate estimates into a 
        Hydrological modeling processing 
3. To simulate and compare rainfall-runoff based on the QPF and observed data in a 
        suitably calibrated MIKE 11 NAM model for the study area 
4. To couple the  runoff result to a GIS model of the basin for flood mapping  
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Methodology and Database 
 

The study area is the Langat River Basin in Selangor Malaysia; it is 2010km in 
area and comprises five sub-catchments of Lui, Kajang, Dengkil Semenyih and lower 
Langat. Details of the basin can be found at http://gwater.jmg.gov.my/mis/arep/genfeat 
.htm. The operational flood forecasting framework (Figure1) shows a three stage 
methodology that integrates a QPF, hydrological and GIS modeling processes. The 
MIKE 11 River modeling system was used for hydrological modeling due to its 
versatility for hydrological process and the ability to integrate with GIS. MIKE 11 
hydraulic and NAM runoff models have shown to provide accurate and useful results in 
numerous flood related studies (DHI, 2003; MIKE 11, 2003; Madsen, 2000; Havno, et 
al.1995; Singh, 1995). The methodology was tested for the rainfall and flood event of 
27th September to 12th October 2000 in the Langat Basin area. 
 
Quantitative precipitation forecasting using (NOAA AVHRR and GMS data) 

Ideally synoptic data are used to provide information on rainfall runoff and basin 
responses to flood mostly with short lead time; however for a flood forecast and early 
warning to be really effective, a long lead time of forecast is necessary to provide 
enough time for contingencies. Many studies   suggest that meteorological satellite data 
provides the answer to this problem through the processing of data in TIR to retrieve 
cloud information that may be useful in determining local rainfall and predicting flood 
disaster.  

In the study, NOAA AVHRR and GMS data were process for TB in the TIR to 
determine top of clouds temperature below the threshold of 235o K that have a 
probability to precipitate. The TB test for the day pass AVHRR data involved processing 
entire scene’s channels to top of atmosphere (TOA) reflectance and temperature in 
radiance using the calibration coefficients provided in the NOAA KLM User Guide 
(NOAA, 2000). The calibrated radiance in the data channels 4 and 5 were converted to 
the scene TB using formulas supplied in NOAA AVHRR data processing software user’s 
guide (Andersson, 2002). The scene TB was masked to the area of interest (AOI) Langat 
Basin as shown in Figure 2 based on the cloud model technique and established 
empirical estimates that cloud top temperature (CTT) below 235o K in the tropics 
produces rainfall of 3mm/hr. The values of TB in the mask are displayed in a color 
schemes ranging from 179o K to 295o K.  
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Figure 1:  Framework of Operational Flood Forecasting 
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 295 K                                                         179 K                  

Figure 2: TB in Degree Kelvin in AVHRR Masked to Langat Basin 
 

The cloud pixels over the individual catchments show expected precipitating area 
in the Langat Basin for the TB processed AVHRR scene. Further classification was 
performed using K-means to remove the fuzziness in cloud pixels and group pixels into 
mean clusters that shows mean average temperatures of cloud pixels classes. The K-
means class clusters (Figure 3) represent the variation in rainfall intensity to which 
different rain-rates of 3 to 12 mm/hr were assigned. The estimation of the area rainfall or 
mean average rainfall for the portion of catchment covered by the cluster is computed 
based on the pixel count of the cloud fraction for the area and rainfall intensity. 

 

 
 Figure 3:  K-means Classification 
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Hydrological modeling for rainfall runoff process (MIKE 11 Model) 

The rainfall input to the hydrological model was based the QPF and subsequently 
observed rainfall to facilitate comparison. The Langat hydrological model was 
implemented with the aim of analyzing the rainfall–runoff on an adequately calibrated 
MIKE 11 NAM model to best describe the basin characteristics. The hydrological 
modeling process forms the second methodological step of operational flood forecasting. 
It attempts to streamline rainfall input and floodplain output to enable the modeling of 
rainfall runoff relations with greater efficiency and also contribute to improvements in 
the ability of the model to respond to the scenarios of a disastrous flooding event in 
Malaysia. 
 
Table 1: Assignment of rain-rate 

          TB (oK) 188-200      201 – 210 211- 225      226- 235      236 
Assigned rain-rate (mm/hr)      12        8       6       3  0 
 
Hydrological GIS for flood mapping (AcView GIS) 

The hydrological GIS for the Langat river basin was developed with MIKE 11 
GIS that has a flood management (FM) model with an associated DEM module for basin 
and flood plain surface development. A combination of point and contour elevation data 
were used to develop the surface DEM and together with other supporting data that 
include land cover, delineated catchment boundary and data on past flood to present the 
flood plain information. The result of the rainfall runoff simulation form the 
hydrological modeling process were imported and coupled to the DEM for the flood map 
generation. The flood extent was visualized and settlement data overlaid on the flood 
map to assess the damage due to the flood. 
 

Results and Discussion 
 

Precipitation which is a primary input to overland flow shows considerable spatial 
variation brought about by differences in the type and scale of development and is also 
strongly influenced by local or regional factors, such as topography and wind direction at 
the time of precipitation (Sumner 1988). In a large river basin however, heavy rainfall in 
the mountain upstream can result in severe flooding downstream thus the use of average 
distributed rainfall to determine runoff. As a foundation of the study to determine the 
level of average rainfall that may result in flooding, a careful study and comparison of 
monsoon rainfall rates, calibrated radar and temperature reading form complementary 
geostationary satellite data was carried out  on  periodic  monsoon data covering 2003-
2005. The comparison showed a high coefficient of determination with average   r2 = 
0.7617 between rainfall rate and CTT.     A steady rise in the correlation curve was 
observed at temperature of 220o K where the rainfall level is about 5 mm. This 
relationship is in general agreement with the long established empirical observation of 
the relationship between rainfall and temperature in the tropical regions of the world. It 
also confirms the study of Vicente and Scofield (1998) whose similar work also 
established a high correlation between calibrated precipitation radar rain-rate and 
GOES–8 temperature readings. Based on the overall comparison Table 1 shows the rain 
rate established in relation to TB in degree Kelvin.  
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Based on the QPF model, AVHRR data was processed for to establish a 1D TB 

cloud model. As determine by the model, rain-rate of 3-12 mm/hr were assigned to each 
K-means cluster that has a direct relation on cloud top TB. The model calculates 
maximum rain-rate as a function of maximum cloud height above 12000 m, maximum 
cloud top reflectance (CTR) above a threshold of 28% and minimum TB below a 
threshold of 235 oK. The assumption is that every cloud pixel of the set thresholds has a 
beginning unit rain-rate of 3 mm/hr, considered from empirical studies to be the 
appropriate precipitation level over tropical areas within +/- 3o around the equator 
(Anagnostou at al., 1999). 
 

 
Figure 4: QPF Model Grid Based Rainfall 
 

The entire basin rainfall is thus shown in Figure 4 from which rainfall coverage 
and volume can be estimated. The grid base rainfall area is assumed to have a pixel size 
of 1.1 km the same as the spatial resolution of the AVHRR data. The rain-area (Ar) is 
thus the total cold cloud fraction and the portion of the catchment or area covered by K-
means class. By using a 1.1 km grid cell size, the area for each cell is calculated as 1.21 
km2. The pixel/cell count (P) for each K-means class as determined by the coverage of 
the classification, is used to estimate expected precipitation.   

In the projected grid rainfall of the QPF (Figure 4) the assumed highest rain-rate 
area has pixel count P= 1055 based on the K-means class. Rainfall area estimate were 
computed as Ar = 1276.55 km2 ,VRr = 12660 mm, AVr = 9.9 mm/hr:-   using Equations 

 
Ar = P (1.12Tc)                    (1) 
 
VRr = P (Rr Kmeans)         (2)   
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The average rain rate over the raining area of K-means cell/pixel is  
 
AVr = VRr/ Ar        (3)              
 
where: 
            P is the number of cells/pixels in K-means class,  
           VRr   is instantaneous volume rain-rate of K-means class 
            AVr is the average rain rate of K-means 
            Tc is the K-mean temperate range below the threshold of 235 oK 
 
In the hydrological modelling rain runoff was generated using hourly TB readings 

from GMS-5 data for the QPF rainfall estimate and comparable observed rainfall tested 
on the flood  event of 27th September to 8th October 2000 in the the Langat Basin. Figure 
5 shows the comparison of   runoff for the Kajang sub-catchment excluding the existing 
discharge. The coefficient of determination for the QPF runoff compared to the observed 
rainfall runoff for the event showed r2 = 0.9028. The hydrological model was calibrated 
for the basin using observed discharge and evaporation and processed for the two rainfall 
series QPF and observed rainfall. The resulting calibrated runoff including observed 
discharge are presented in Figures 6 and 7 showing comparable hydrographs with r2 of 
0.926 and 0.819 for the observed and QPF rainfall respectively. 

An exact agreement between the simulated and observed hydrographs was not 
achieved in both simulations although relatively high coefficients of determination were 
observed. The reasons for the disagreements were partly due to poor optimization of 
some the 9 calibration parameter input to the MIKE 11 NAM model. With an average 
RMSE of R2 = 0.873 the calibration was considered suitable for the model application in 
the Langat Basin and possibly other basins with similar physical characteristics. The size 
of the basin and sub-catchments was not considered a constraint in the model application 
as studies (MIKE 11, 2003) has demonstrated the model can be employed in bigger 
catchments.  
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Figure 5: Comparison of Runoffs for Observed Rainfall and QPF Estimated  for Kajang  Sub-catchment  

R2: 0.9028
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Figure 6: Observed Rainfall-Runoff (Kajang Sub-catchment) 
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  Figure 7:  QPF Rainfall-Runoff (Kajang Sub-catchment) 
                                  

The importance of a flood map as the basis of early flood warning cannot be over 
emphasized; maps constitute an effective media for representing the potential areas to be 
inundated. Its use as an early warning and emergency tool can only be effective if 
inundation maps are produced in advance of a flood event to provide ample time for 
contingence planning and also providing few false alarms. In the study, runoff 
simulation results in the hydrological modeling process were coupled to a GIS where the 
basin DEM and the river channel geometry were prepared. The resulting flood map is 
shown in Figure 8. 

R2 = 0.819

R2 = 0.9263
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The flood depth (Figure 9) was generated and validated using 10 sampled flood 

depth point publish in the annual flood gazette (DID, 2000) for the Langat basin flood 
2000. The map displays three depth classes ranging from 0-0.5, 0.6-1 and above 1 m. 
This range was determined by cross referencing the flood level shown in different colour 
tone in the flood map with measured flood level (river cross section depth subtracted 
from water surface height) at selected location in the coupled hydrodynamic and runoff 
simulation results. The validation of the flood depth based on the sampled points showed 
an accuracy of 70%, whilst measured depth in some places generally ranged between 1-2 
m. The study is still ongoing and although encouraging results have been achieved, the 
validation of the flood extent is yet to be fully carried with the appropriate data.    
 

 
 Figure 8: Flood Map 
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Figure 9: Flood Depth 

 
Conclusion 

 
A general framework of operational flood forecasting and early warning that 

integrated a three part methodological modeling process comprising QPF, hydrological 
simulation and hydrological GIS has been presented. A QPF process was introduce 
through the combination of cloud indexing and cloud model base technique to estimate 
rainfall from pre real-time AVHRR and GMS data. In the process a grid based rainfall 
map was produce to show the rainfall intensity for the Langat river basin. As a result 
area rainfall (Ar), instantaneous volume rain-rate (VRr) and the average rain rate (AVr) 
were estimated. Comparison of simulated runoffs for the QPF rainfall estimate and 
observed rainfall shows similarity with  r2 = 0.9028. Simulation result was again coupled 
to the DEM of basin to generate a flood map for the event of 2000, where the validation 
of flood depth achieved 70% accuracy. The study is ongoing and efforts are being made 
to acquire synthetic aperture radar (SAR) data to validate the flood extent. 

Outside of the QPF modeling process and the assimilation of computed rainfall 
estimates to the hydrological modeling, the hydrodynamic, runoff simulation and flood 
mapping methods used in the study represented a general case study of the integration of 
hydrological and multi-source spatial information for flood forecasting and mapping. 
The datasets compiled over the course of the project provide useful information as a 
guideline for the implementation of other multi models and multi-source data in an 
integrated operational flood forecasting system. The developed QPF model is flexible 
enough to be easily extended for short–range severe flood forecasting over medium and 
large river basins in other tropical area.  
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