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Abstract: The savanna region in Sudan is defined as a rangeland and rain-fed croplands region. Degradation

in vegetation cover by overgrazing and cutting of woody plants are the common desertification processes.

Remote sensing techniques have been applied in the study of desertification to monitor land cover degradation

and characterize the dynamism of sand dunes. Three Landsat images(Landsat5 TM and two Landsat7 ETM+),

acquired in 1987, 1999 and 2008, were used to evaluate the development of degradation processes in Central

North Kurdufan State (Sudan), part of the savanna region in the Sahel belt. Traditional methods to extract

vegetation and soil information from remote sensing data in semi-arid areas, such as classification techniques

and vegetation indices, were found to be inaccurate. In this work, Spectral Mixture Analysis (SMA) and

multitemporal  comparison  techniques were therefore applied to emphasize vegetation loss, soil change and

the growth of village areas in the study area. In order to have powerful strategies to combat desertification,

accurate information in estimation the driving factors of land cover degradation at local scale are necessary.

To identify the soundest strategies, more study in the interpretation techniques and high-resolution tools must

be applied. In this study, the application of spectral mixture analysis along with change vector analysis to

Landsat data appeared to be a consistent and low-cost technique to obtain information on vegetation cover,

soil surface type and identify risk areas.

Key words: Remote    sensing •     Spectral    mixture   analysis •     Change    vector    analysis •    Landsat
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INTRODUCTION Most remote sensing in arid regions has

Regional and national planning to monitor land cove

degradation in semiarid areas can be performed more

efficiently if accurate spatial information is provided.

Maps which show such information can be produced

through the use of satellite images and digital data and

field indicators [1]. Remote sensing of vegetation cover

and  soil  is  thus  critical  for  regional  scale monitoring.

In order to use remote sensing in mapping land cover

degradation in semi arid areas, study of optical properties

of the vegetation and soil elements in these areas is

needed [2, 3]. The meaning and value of remote sensing

data are enhanced through skilled interpretation, in

conjunction with conventionally mapped information and

ground-collected data [4].

concentrated  on  optical remote sensing techniques

which use data from sensors that collect radiation in the

reflected solar spectrum. Earth observation data,

particularly Multispectral Scanner (MSS) imagery and

Landsat Thematic Mapper (TM) have been widely used

in semiarid environments to show up temporal and spatial

variations in land cover using their reflectance

characteristics [5].

Since the launch of the first Earth Resource

Technology Satellite on July 23, 1972, the analysis of data

has advanced from simple visual observation to

sophisticated  interpretations  based  on  first principles

of  spectroscopy  and   electromagnetic   radiation  [2].

The Normalized Difference Vegetation Index (NDVI) has

been  most  commonly  used  to  map  spatial and temporal

variation in vegetation [6]. NDVI has only limited success
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in providing accurate estimates of shrubland cover in arid The percentages of vegetation and soil vulnerable to

areas and limited utility in an arid ecosystem. This is due erosion fraction images are used to monitor the vegetation

to spectral variability of background materials such as soil re-growing and degradation.

and surface litter and the strength and variation of soil The   savanna     region     in     Sudan    is    defined

spectral albedo, which causes nonlinearity in the as a rangeland  and  rain-fed  croplands  region.

relationship between NDVI and vegetation Degradation   in    vegetation    cover    by   overgrazing

characteristics[7, 8]. and  cutting  of  woody  plants  are  widespread in

Spectral mixture analysis (SMA) is a sub-pixel savanna region. Since limited funds are provided to

classification technique which could be use to unmix the Sudanese research institutions, remote sensing can be a

soil-plant canopy measurements into the respective soil, reliable tool to study land cover degradation without

vegetation  and  non-photosynthetic  vegetation [5]. incurring high costs [11, 12, 13]. More studies are

SMA depends on the spectral response of land cover therefore necessary in order to define accurate techniques

components. The spectral response in remote sensing in the remote sensing field to study driving variables

from open canopies is a function of the number and type affecting the degradation and adopt efficient site-specific

of reflecting components, their optical properties and strategies to combat it.

relative proportions [9]. SMA appears to be the most This paper aimed to test the application of SMA and

efficient technique to obtain information on vegetation CVA to Landsat images as tools to study land cover

cover, soil surface type and vegetation canopy variation during 2 decades in a savannah region in the

characteristics in semiarid areas because the scale of central part of Sudan.

variability of the principle landscape elements in semiarid

areas is larger than the pixel size in most of the remote MATERIAL AND METHODS
sensing satellite imageries [9, 3, 4].

Change detection methods are commonly used in Study  Site:  The  study  site is located in the north of

monitoring land degradation. Change can be identified Umrowaba in North Kordodan State, central Sudan, in the

explicitly either as change in the number of environmental Sahelian  eco-climatic  zone  (between  latitude  12°56'35"

components or as a change in percentages of the and 13°3'49"  N and longitude 31°0'51" and 31°58'51" E)

components [9]. Visual interpretation and direct (Figure 1). The climate is semi-arid with annual rainfall

measurement using map-algebra are widely used in ranging from 200 to 750 mm, concentrated during a few

change detection. Change Vector Analysis (CVA) by summer months (June to September), with a peak in

Malila  [10],  which  allows  the  direction and magnitude August. Mean annual temperature is about 20°C, but the

of change between two time periods to be evaluated daytime temperature can rise as high as 45°C during

comes   to   be   important   in    land   cover   degradation. summer.

Fig. 1: Study site position and main landscape elements

The soil is a Cambric Arenosols [14], coarse sandy, of Aeolian origin with high infiltration rates and inherent
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low fertility. Sand sheets and sand dunes stabilized by They were geometrically rectified using 13 ground control

vegetation are the main natural formations. Natural points to accurately mach them to ground reference data.

vegetation  consists  of  trees (Acacias  spp.),  bushes The nearest neighbour assignment [16] was applied

and grass, Aristida pallida Steud. on crests of dunes, yielding a root mean square (RMS) error of 0.34 pixels.

Eragrostis termula Tnismert. in the troughs and Subsets covering only the study area were then extracted

Cenchrus biflorus Roxb., which grows after crop from  each  image.  To  apply SMA the digital number

cultivation. Rangeland and rain-fed croplands are the (DN) of the images band1-5 and 7 recorded in 8 bits were

most important land use systems. The main crops are converted to exo-atmospheric reflectance units according

sorghum (Sorghum vulgare Pers.), millet (Panicum to Markham and Barker, [17]. The conversion also

miliaceum L.), sesame (Sesamum indicum L.) and improved the image quality [18]. No atmospheric

watermelon (Citrullus lanatus (Thunb.) Matsum & correction techniques, such as empirical line calibration

Nakai). The rainy season usually leads to a short growing [19] or dark object subtraction [20] were applied since

period followed by a long dry season with a reduction in they have no significant effect on the modelling [21].

green vegetation.

Data Acquisition and Preprocessing: Three Landsat sensing  images  of  arid  and  semi-arid   environments,

images  were  selected and analyzed to application of the pixel contains mixed spectral information due to the

SMA  in  Landsat  images in monitoring land cove and high variability in the distribution of land cover

use in the study site: one Landsat Thematic Mapper components. SMA is based on the concept that the

scenes (TM5 1987) acquired on September 15  1987, variance across a given scene is dominated by the relativeth

Landsat  Enhanced  Thematic  Mapper  plus  (ETM+7 proportion of a few spectrally distinct components [22].

SLC-on) scene acquired on November 11  1999 (ETM+7 SMA transforms radiation or reflectance data intoth

1999) and  Landsat  Enhanced   Thematic   Mapper  plus fractions of a few dominant endmembers, which are

(ETM+7 SLC–off) scene acquired on October 18  2008 fundamental physical components of the scene and notth

(ETM+7 2008). The selected ETM+7 1999 was in themselves  a  mixture  of  other  components [22].

November since there was no available image free of Fraction  images  represent the mixing proportions of

cloud from August to October. these endmember spectra [23, 24]. SMA generally

While TM5 1987 and ETM+7 2008 were acquired in involves three steps [25]: a) assessment of dimensionality

periods of comparable rainfall amount (4.6 mm in or number of unique reflecting materials in a landscape to

September 1987 and 8.4 mm in October 2008), ETM+7 1999 obtain the endmembers; b) identification of the physical

images  were  selected  to  study  the  effect  of  rain. nature of each endmember within a pixel; c) determination

Indeed the mean annual rainfall in 1999 was 581 mm in the of the amounts of each endmember in each pixel.

study site  relativity  higher  than  the  mean   annual The basic linear spectral mixture analysis (LSMA)

rainfall (470 mm). Landsat images were selected because equation is [4].

they are free of charge, with high monitoring frequency

and cover areas appropriate for monitoring the (1)

environment in a large geographic zone. Landsat TM5 and

ETM+7 have a temporal  revisit  time of 16 days and a

spatial resolution of 30 m with six visible/near infrared Where R  () is the apparent surface reflectance of a pixel

bands and one thermal band. The gaps in ETM+7 SLC-off in  an  image,  f  is  the  weighting  coefficient 

were filled using  the  localized linear histogram mach

(LLHM) method [15]. Landsat ETM+7 SLC-off, November interpreted as fraction of the pixel made up of the

3  2008, were used to fill the gaps in selected ETM+7 SLC- endmember i = 1,2 …n, R () is the reflectance spectrum ofrd

off 2008 image since the gaps were not overlapping and spectral endmember in an n-endmember model and () is

the time lag between the two images was only 15 days. the difference between the actual and modelled

ETM+7 1999 and ETM+7 2008 were co-registered to reflectance. fi represents the best fit coefficient that

TM5 1987 to undertake comparative analysis. Images were minimizes RMS error given by the following equation:

not referenced to a standard map base, since the only

available map had a coarser resolution (scale 1:250,000). RMS = (2)

Spectral Mixture Analysis and Endmembers: In remote

p

i

i
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where j is the error term for each of the m spectral produce  the  fraction  images  with   associated  the

bands considered. RMSE images.

One problem related to the application of SMA is

nonlinear mixing, which can hinder the SMA applications Change Detection: Two approaches were conducted to

[26, 27]. Nonlinear mixing occurs when photons interact evaluate the variation in land use and land cover (LULC).

with more than one type of object on the earth before The first approach was visual interpretation of the land

returning to the sensor [8]. However, the importance of cover elements in the different years. Visual interpretation

the  effect is not widely recognised since other studies for each  endmember  was performed using a standard

[28, 29] showed that nonlinear mixing is a secondary RGB composite by displaying fractions images of the

feature. three years 1987, 1999 and 2008 as blue green and red,

Some SMA approaches use endmember spectra respectively. The second approach consisted in Change

derived from the image (image endmember) [30, 22], Vector Analysis (CVA) [10]. CVA allows the direction and

whereas others employ libraries of endmember spectra magnitude of change between two time periods to be

(library endmember), which are produced from reflectance evaluated. Vegetation and soil vulnerable to erosion

measurement in a laboratory [5]. Tompkins et al. [31] fraction images  were  used  to  monitor  the vegetation

pointed out that endmembers selection is the most critical re-growing  and desertification in three terms of time

step in SMA to provide a physically meaningful fraction. (1987-1999, 1999-2008 and 1987 -2008). Change direction

While library endmembers would undoubtedly represent was measured as the angle of the change vector between

a purer endmember spectrum and would possibly have two coincide pixels measurement in the two different

given a more accurate absolute abundance, image years. Angles measured between 90° and 180° indicated

endmembers simply produce a different scaling and can an increase in sand and decrease in vegetation and

thus be used for change detection [22]. Bateson and therefore an increase in degraded area. On the contrary,

Curtiss [32] and Bateson et al. [33] generated SMA angles measured between 270° and 360° indicated a

models using PCA to explore image data in multiple decrease in sand and an increase in vegetation and

dimensions, although in drylands it is exceedingly difficult therefore represented re-growth conditions. Angles

to locate image pixels containing 100% cover of each measured between 0°-90° and 180°-270° indicated either

appropriate endmember. One advantage of this technique increase or decrease in both vegetation and sand and

is that the selection of the endmember spectra is based on consequently persistence in the conditions (Figure 2) [13].

inherent spectral variability of the image data without Change of magnitude is measured as the Euclidean

requiring  homogeneous pixels of each endmember [8]. distance or length of the change vector between two

The approach of Johnson et al. [34] and Smith et al. [23] coincide pixels measured in the two different years

was  used  to  select  the  endmembers  in   this  paper. equation 3. Four classes of magnitude were represented

The method is based on PCA application to identify the for  either  degradation  or  re-growing according to

endmembers of multiple surface components. The authors Kuzera et al. [38].

observed that for a mixture of three individual substances

(e.g. minerals) the scatter-plot of the first two principle (3)

components produced a triangle in which the ‘pure’

endmembers were located at the corners. Several studies Where:

have adapted this technique by analyzing different R : The magnitude of the vector change;

principal component pairs and have managed to x1 : Sand in T1;

successfully obtain image endmembers within different x2 : Sand in T2;

environments [35, 36, 37]. In this study a PCA was applied y1 : Vegetation covers in time T1 and

to Landsat images using ENVI to identify endmembers. y2 : Vegetation cover in time T2

The spectral mixing space as represented as orthogonal

scatterplots of the first three PC bands were generated

and the vertices of these plots were selected as

endmembers after visualization in the original images.

Endmember spectra were applied to SMA in order to
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Fig. 2: Change vector analysis diagram

Field Survey: A 2-weeks field survey was conducted in lower leaf chlorophyll/water content (senescing

October 2008 in order to test the accuracy of SMA using vegetation). NPM identified villages (e.g. straw houses),

ground vegetation data as references. A total of 16 mixed dormant trees and senesced grass and shrubs. BS and DS

ground cover plots (size 60 x 60m for each plot) were represented coarse sandy soils and fine sandy soils with

selected. Vegetation was composed of a mixture of acacia higher  organic  matter  in  the top layer, respectively.

trees, bushes, grass and shrubs. Trees and bushes were Both BS and DS absorbed more energy at 2.215

georeferenced with a GPS and the crown diameters were micrometer (band 7) than at 1.65 micrometer (band 5)

measured and orthogonally projected to the ground which indicates availability of moisture content [39]

surface to estimate the percentage cover. The percentage (Figure 4). A higher soil organic matter content usually

cover of grass and shrubs was estimated using the line also implies a higher soil water holding capacity and

point intersect sampling method [22]. Measurements of subsequently higher water content. The effect of shadow

the grass and shrubs were taken along 30 60-m long was ignored since it is reduced for the sparse canopies

transects, oriented in N-S direction, every 2 m. typical of many semiarid bush species [40].

Measurement points were selected at 60 cm intervals The endmember set was selected to maximize the

along the transect. The grass and shrubs under the trees model performance for BV and BS which is more

and bushes were ignored. The accuracy of SMA was vulnerable to wind erosion than DS. Not all image

estimated by scatter plot correlation comparing total components can be effectively modelled using simple

percentage of live cover in each plot with the live cover endmember models [37]. To find the best quality of

(vegetation) fraction image. fraction  images,  three  combinations  of endmembers

RESULTS AND DISCUSSION endmembers;  2)  four  endmembers  with BV, NPM, BS

Endmember Spectra and SMA Applications: The PC Fraction images derived from different combinations of

analysis of TM5 Sep 15 data found that the first three endmembers were evaluated with visual interpretation,

components explained over 99% of the variance and that error extent and distribution in the error fraction image.

simulated data were mean-corrected and projected onto The combination with four endmembers (BV, NPM, BS

the  space  determined  by  those  components.  In this and DS) was chosen since it provided the best distinction

PC-reduced space five endmembers were manually of LULC types and lowest errors.

selected (Figure 3): bright vegetation (BV), dark This  set   of   endmember   spectra   was  therefore

vegetation (DV), non-photosynthetic material (NPM), used  across  the  three  selected  images.  Using  the

bright soil (BS) and dark soil (DS). BV consisted of all identical endmembers to analyze multitemporal images

types  of  natural vegetation (e.g. dense shrubs, grass) strengthened the change analysis [22]. Similar to using

and cultivated crops with higher leaf chlorophyll and reference endmembers from a spectral library, using

water content. DV consisted of natural vegetation with identical  image  endmembers  for  different images allows

were tested [41]. The combinations were: 1) all five

and DS; 3) three endmembers with BV, NPM and BS.
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Fig. 3: Scatter plot of the three PCs and five endmembers location

Fig. 4: Five endmembers spectra

a direct comparison of resulting endmember proportions SMA estimated vegetation fraction in 2008

[37]. The RMS error images for SMA process ranged from

0% to 3% for TM5 1987, from 0 %to 1.5% for TM+7 1999 gaps in ETM+7 Oct 18 [15] and accuracy of the field

and from 0% to 2.8% for ETM+7 2008. survey, especially in the estimation of grass and bushes.

Figure 5 shows the scatter plot correlation between Considering the comparative approach of the present

the percentage of vegetation determined with SMA work, the overestimation errors were considered

(ETM+7 Oct 18) and field data. In general, the correlation acceptable to evaluate the LULC change.

between them is good with an R  of 0.91 but with a slight2

overestimation,   especially   at   lower   SMA  values. Change Detection: Average estimation of endmember

There are three main sources of error that could have fractions  is given in Figure 6. The effect of the rainfall

affected the comparison. The first one can be due to the was very  clear  for  BV  whose  fraction  increased of

misregistration  of multidate scene and location of the 16% from 1987  to 1999 (the rainiest year) and then

field sites. This is potentially the largest source of error decreased  in 2008 to the initial level. The fraction of

[37], especially in our case where the geometric bright  soil  increased  over   the   21 yrs  (+14%).

rectification was done with 13 ground control points for However,  average  estimation  is  not  sufficient to

all  the scenes  before  subsetting  of  the  study  area. provide a clear representation of spatial change at

This was done because the study area had no fixed sharp landscape scale [42, 43].

points that could be used as control points. Moreover, Tempo-spatial variations of the endmember fractions

most of the sites were characterized by a higher degree of are visually interpreted by displaying fractions for year

scene heterogeneity that could have increased the 1987 in blue, year 1999 in green and year 2008 in red for

uncertainty in location [37]. Other sources of error can be each endmember (Figure 7). The visual interpretation of

related to the application LLHM  method  error  to  fill  the color   composite   shows   that  the  major  changes  have

Fig. 5: Scatter plot correlation between measured and
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Fig. 6: Average estimation of endmember fractions

(a) (b)

(c) (d)

Fig. 7: Displaying endmember fractions images in stander BGR composite as year 1987 in blue, year1999 in green and

year 2008 in red a) vegetation; b) NPM; c) bright soil and d) dark soil

the most saturated colors while the minor changes have vegetation in 2008. Figure 7 shows an increase in

less saturated colors. White tones indicate no temporal vegetation  fraction  due  to  the  high  rainfall  in  1999  in

change and grey tones indicated no existence for that the  north-east  part  (saturated green color) although the

endmember. date of the image in November when the rain was less

Vegetation fraction in general was higher in 1987 and than in August and September. In 2008 vegetation

1999, mainly located around the villages, indicating lost of fraction  increased  in  small  scattered  areas  (red  color).
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Fig. 8: Degradation  and  re-growth  areas  calculated  by applying CVA, a) from 1987 to 1999, b) from 1999 to 2008; c)

from 1999 to 2008

NPM   was    high    in    1999     represented by

saturated   green    most    likely   represented   the

seasonal growth of non-perennial vegetation (e.g.

herbaceous species) due to high rain fall from   August

to   October.   The   white   color   in  NPM composite

shows the stable area of the villages and the red color

around them indicates clearly the extension of these

villages. A drastic change of BS fraction can be observed

in 2008 (Figure 7). It was spatially distributed around the

villages and across the site from the northern to the

eastern part.

CVA quantified land cover degradation in degree of

severity in (Figure 8). The difference in BS fraction for was Fig. 9: Rainfall Anomaly Index (RAI) from 1973 to 2008. 

provided in CVA equation for soil vulnerable to erosion

parameter while the difference in BV fraction was degradation conditions (high or extreme) in the eastern

substituted  for  vegetation   fractions.   According to part.  Change  detection  analysis  also  shows  the

CVA (Figure  8),  the  magnitude  of  desertification existence of   re-growth  conditions,   mostly   spread   in

ranges from low to extreme, with a prevalence of severe the south-western part.
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(a) (b)

(c)

Fig. 10: Degradation  and  re-growth  classification  of  study  site  according  to  the  classes  a)  from  1987  to 1999, b)

from 1999 to 2008; c) from 1999 to 2008

Estimating degradation and re-growth areas in medium (17,005 km ) and low (13,708 km ). However,

separate terms of time (1987-1999 and 1999 -2008) make average estimation is not sufficient to provide a clear

sense  in  observing  the  effect  of  rain  in long run. representation of driving factors of change at landscape

While  degradation  in  land  cover  affects  small areas scale [42, 43].

from  1987  to  1999  shown   in   Figure   8   very  large Re-growth conditions observed in the SW part

areas were affected in extreme to high condition of appears in the map from 1987 to 2008 were mainly due to

degradation  in  land   cover   from   1999   to  2008. High Government reforestation projects in last decade and

rain  in  the  1990s  and  fluctuating  rain  in  2000s sustained by higher rainfall in the last years in the study

according to the Rainfall Anomaly Index (RAI) [44] area. RAI time series (Figure 10) confirmed the existence

(Figure 9) was one of the factors affecting the degradation of favourable conditions for vegetation growth from the

in the study site. 1990s to 2008, with higher frequency of positive anomalies

Considering map of degradation and re-growth from than in the 1970s and 1980s.

1987 to 2008 is the most reliable estimation since the The degradation appears in the map from 1987 to

amount of rain in the two years was comparable and the 2008 was driven by various factors, which operated with

also the acquisition time of the two images, degradation different intensity in the areas. In the eastern part the

prevailed over re-growth, (Figure 10) affecting an area of expansion of villages triggered the change in land use and

153,867 km , with a prevalence of medium (70,944 km ) and mismanagement of the natural resource, mainly caused by2 2

high (48,578 km ) classes of magnitude. Re-growth was deforestation to supply wood for domestic uses i.e.2

estimated on an area of 35,313 km , mainly classified as building, cooking, etc. and overgrazing [45].2

2 2
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The recent satellite and model based studies of the 2. Ustin,  S.L., P.J. Zarco-Tejada S. Jacquemoud and

Sahel  [46,  43,  47]  which  demonstrated  that vegetation

has  recovered  from  the  peak drought conditions

suffered  in  the region in the 1980s are approved this

result  For  example,  Anyamba  and Tucker [43],

monitoring  the  Sahelian  vegetation dynamics using

NDVI in the period 1981-2003, observed the prevalence of

greener than normal  conditions  from  the 1990s  to 2003.

Indeed, NVDI  time series followed a similar increase in

rainfall over the region during the last decade and

indicates a gradual slow but persistent recovery from the

1980s.

CONCLUSIONS

The complication in providing information on

vegetation types and structure from images acquired

during the rainy season and to discus it with the variation

of soil has a number of important implications regarding

the availability of the images free of cloud and the role of

satellite imagery in increasing our understanding of

vegetation structure and soil type in semiarid areas.

Particularly, it highlights on the need for long-term

ground-based monitoring of changes in vegetation ana

soil characteristics and data from new satellite sensors in

order to help in developing different reflectance models

and images analysis for the vegetation community and

soil type in arid an semi-arid areas.

Site-specific strategies according to accurate

information in estimation the driving factors of land cover

degradation at local scale are thus necessary to combat

desertification, avoiding the implementation of untargeted

measures. In order to identify the soundest strategies,

more study in the interpretation techniques and high-

resolution tools must be applied. In this study, the

application of spectral mixture analysis with change

vector analysis to Landsat data appeared to be a

consistent and low-cost technique to obtain information

on  vegetation  cover,  soil  surface  type  and  identify

risk areas.
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