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Abstract: It is known that the relation between crop covered soil moisture and backscatter coefficient is highly

perturbed by a number of factors such as topography of the terrain, vegetation density and variations in small-

scale surface roughness. The effect of these factors needs to be minimized in order to accurately establish the

relationship between backscatter coefficient and crop covered volumetric soil moisture. The aim of this study

is to map soil moisture from ERS-2 SAR images by minimizing the effect of vegetation on the backscatter

coefficient. For minimizing the crop effect on soil moisture, it is important to know the impact of individual crop

descriptors (i.e., crop height; h, Leaf Area Index; LAI, Plant Water Content; PWC) on backscattering coefficient.

For this purpose, a detailed analysis has been carried out to identify the prominent crop descriptor and to

minimize its effect on soil moisture estimation. Semi-empirical water cloud model was used to eliminate the

vegetation effects on backscatter coefficient. Three images of three different dates (i.e., 28  July 2003, 29th th

March 2004 and 3  May 2004) corresponding to three markedly different seasons were acquired over a typicalrd

river catchment in India. The results showed that the water cloud model based on LAI as the canopy descriptor

was able to estimate crop covered backscatter coefficient more accurately than the models based on either of

the remaining two crop descriptors. Once the crop covered backscatter coefficient was determined, a nonlinear

least square method (LSM) was implemented to retrieve the volumetric soil moisture. A significantly high

correlation (coefficient of determination, R •  0.94) between the retrieved soil moisture and the corresponding2

observed in-situ soil moisture for barren land as well as crop covered surfaces was obtained. Subsequently,

soil moisture maps were generated from three images individually to depict the spatial distribution of soil

moisture during the three seasons. The estimated spatial distribution of the soil moisture was also compared

closely with the in-situ observations.

Key words: Backscatter coefficient •  Microwave remote sensing • Rms surface roughness •  Water cloud model

INTRODUCTION Conventionally, soil moisture has been directly

Ground surface soil moisture is the key parameter such methods. Fortunately, microwave radar images have

that plays a significant role in partitioning of precipitation the potential of quantifying the spatial distribution of

into runoff and infiltration processes and is considered as volumetric soil moisture. This is due to the fact that

a key input variable in a number of scientific studies in microwaves penetrate into the soils with vegetation and

hydrology, meteorology and agriculture. Knowledge of high surface roughness. However, accurate retrieval of

spatial distribution of soil moisture in a region in near real soil moisture from RADAR images is not simple since the

time is therefore needed for backscatter coefficient, ° (i.e., the pixel wise RADAR

• Forecasting of river flows resulting due to rainfall sensor related parameters. The surface related parameters

during storm events include dielectric constant, topography, type of

• Planning, designing and scheduling of irrigation vegetation and surface roughness whereas sensor related

systems parameters include incidence angle, polarization and

• Soil conservation studies frequency. Variation  of the soil moisture over a depth up

measured at sampled locations using gravimetric or other

data,) is strongly influenced by the surface as well as
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to  5  cm  below  the  general  ground  surface  is  possible of moisture within the field. Next of the seasons was end

to be retrieved using the active microwave technology of spring that had meager rainfall and humidity less than

Ulaby et al [1]. 50%. The last one being beginning of the summer season

The effect of surface related parameters such as had effectively no rainfall and humidity less than 40%.

topography and vegetation on backscatter coefficient can During the spring and summer seasons, the area was

be studied via a number of modeling approaches. For dominated mainly by four land cover classes - barren land,

minimizing the effect of vegetation, a semi-empirical water grassland, sugarcane and wheat.

cloud model, developed by Attema and Ulaby, [2] and

later modified by various authors [1, 3, 4-7]  may be used. Experimental Datasets
The water cloud model defines the total backscatter Remote Sensing Data:  Three ERS-2 SAR, C band images

coefficient recorded by the sensor over vegetated (5.3 GHz frequency and VV polarization) at spatial

surfaces as an incoherent sum of the contributions of resolution of ~12.5 m acquired on 28  July 2003 (start of

vegetation and soil [8]. In this model, the canopy is autumn season), 29  March 2004 (end of spring season)

usually represented as a set of detailed descriptors such and 3  May 2004 (start of summer season), were procured.

as plant density per square meter, size of leaf and its Two images from Linear Imaging and Self Scanning

orientation etc [9], which makes the model complex and sensors (LISS II and LISS III) of dates 23  June 2002

difficult   to   understand.   Recent  experimental  studies (autumn season) and 12  March 2004 (spring season) on-

[6, 10-15] sufficiently demonstrate the application of water board Indian Remote Sensing (IRS) satellite providing

cloud model. Roo et al [16] used a very large number of data at spatial resolution of ~ 36 m and ~ 23.5 m were also

vegetation parameters (e.g., shape of canopy, stem utilized to produce land cover classification of the study

thickness, leaf size and orientation, leaf moisture and plant area so as to identify the class allocation of the sampled

density per square meter) in order to reduce the effect of pixels in SAR data pertaining to three different seasons.

vegetation on observed backscatter coefficient.

Alternatively, the bulk variables such as LAI, PWC and h Field Data: Surface roughness height, plant and leaf

may also be used as surrogates of detail descriptors in the samples for estimating LAI and PWC and the plant heights

model,  as  has  been  demonstrated  by  several  studies were measured in the field. Soil samples at a large number

[8, 17-21]. of selected locations were collected concurrent to the

The aim of the present study is to further simplify the dates of the satellite pass to estimate the volumetric soil

procedures of estimating soil moisture by identifying a moisture using field based conventional gravimetric

single canopy descriptor for use in the water cloud model method. At each location, five soil samples were collected

so as to minimize the effect of vegetation from the crop within a radial distance of 20 m and the average values of

covered backscatter coefficient. A comparative study is soil moisture at a particular location were considered for

also presented on the use of any of the three major establishing their relationships with the backscatter

descriptors of vegetation namely LAI, PWC and h or their coefficient. The total number of sampling locations was

combination in retrieval of soil moisture from ERS-2 SAR 112, 102 and 102 respectively corresponding to the three

data. dates on which satellite data were acquired. Out of the

total samples, 80% were used for model calibration and

Study Area: The study area belongs to a catchment of the rest were utilised for model validation (i.e., the

river Solani (a tributary of the river Ganges) around accuracy of soil moisture maps were examined by

Roorkee town (between geographical coordinates 78.03°E, validation data). The soil samples were collected from

30.00°N and 77.48°E, 29.45°N), India. The area is relatively both vegetative and barren land surfaces up to 5 cm thick

flat with a maximum slope of 4°. The moisture conditions soil layer beneath the top surface. Global Positioning

in the area were very different during the three seasons in System (GPS) surveys were conducted to determine the

which the SAR images were acquired. One of these (i.e. coordinates of 380 locations, which in conjunction with

the start of autumn season) had fairly good amount of topographical map at scale of 1:50,000 (Survey of India

rainfall, which resulted in an average value of relative map sheet number 53 G/13) were used for the generation

humidity in the atmosphere was observed to be 65% to of a Digital Elevation Model (DEM) of the study area.

70% in the region. During this period, the area comprised A surface roughness profiler was also designed and

of mixed vegetation consisting of grassland, sugarcane, developed in-house to measure the rms surface

cherry and rice. Crops were at their mature stage leading roughness heights, which were also used subsequently

to a variation in both surface roughness and the amount for computation of the backscatter coefficient using
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Dubois model [22]. The profiler has a base length of 85 cm estimate the value of the pixel of interest in the image data.

with 69 vertical needles of height 70 cm each placed at an This filter is based on the probability of a Gaussian

equal interval of 10 mm. The profiler was placed at 3 to 4 distribution and assumes that 95.5% of random samples

locations around each sampling point in the field to are within a 2 standard deviation range [24]. The speckle-

collect the data pertaining to the surface roughness. The adjusted geo-referenced images were used to extract the

measurements were taken and averaged for that location. DN values of pixels corresponding to soil sampling

The rms heights (s) of the surface were computed as [23]: locations.

Computation of Backscatter Coefficient and Local
(1) Incidence Angle: Backscatter coefficient and the local

Where, S(x) is the surface height at a point x in the proposed by Laur et al. [25]. Accordingly, the relation

surface profile,  is the average height of the surface between the backscatter coefficient as a function of DN of

profile and n is the total number of points (vertical rods)

along the abscissa.

Methodology for Soil Moisture Estimation Using ERS-2
SAR Image: Keeping in view the objective of the present

study, the following methodology was adopted,

• Geo-referencing of SAR images. 

• Speckle reduction in SAR images.

• Computation of backscatter coefficient and the local

incidence angle. 

• Generation of Digital Elevation Model (DEM), slope

and aspect maps.

• Land cover classification from LISS II and III data.

• Assessment of the effect of vegetation on crop

covered backscatter coefficient;

• Soil moisture retrieval through non linear least

squares method

• Generation of soil moisture maps.

• Model validation

Geo-referencing of ERS-2 SAR Images: Three SAR
images were geo-referenced with respect to geographic

coordinates using traditional feature based registration

technique by selecting sufficient number of ground

control points (GCP) and applying first-order polynomial

transformation followed with nearest neighbour re-

sampling. The geo-referencing of SAR images enabled the

identification of soil sampling locations on images so as

to extract the DN values at corresponding locations,

which were later required for computing °.

Speckle Reduction in SAR Images: The effect of speckles

in the geo-referenced SAR images was reduced by the

application of widely used spatial filter, namely Lee-sigma

filter. The Lee-Sigma filter utilizes the statistical

distribution of the DN values within the moving kernel to

incidence angle of pixels corresponding to each sampling

location were determined on the basis of the algorithm

the pixel and the incidence angle is given by:

(2)

Where, N is the number of pixels within the area of

interest (i.e., the distributed target). DN  is the digitalij

number corresponding to the pixel at location (i, j).   andi

  are the local and average or mid range incidenceref

angles respectively. The value of   for SAR sensor andref

K is the calibration constant. The values of   and K, asref

obtained from the sensor’s ephemeris record are 23° and

889201.00 respectively.

The local incidence angle   for a pixel at rangei

location i may be computed as:

(3)

Where, R is the radius of the Earth at the first position ofT

satellite, H is the altitude of ERS-2 satellite and R is thei

slant range to a pixel at location i. The ° computed from

Eq. (2), by substituting the values of local incidence angle

obtained from Eq. (3) has been termed as direct

backscatter coefficient ‘ ’ as observed by the SAR

sensor. The  were computed for all the sampling

locations using Eqs. (2) and (3).

However, studies by several investigators [6, 10, 11,

13, 26] have shown that  is highly influenced by a

number of factors that result in weakening of direct

backscatter coefficient. Hence, before relating  with

soil moisture, the effect of surface related parameters such

as topography, surface roughness and vegetation cover

on  must be estimated for accurate estimation of soil

moisture.
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Generation of DEM, Slope and Aspect Maps: The effect DEM  of  the  study  area  reveals  a   maximum   slope  of

of topography must be accounted for on backscatter

coefficient, since it causes the local incidence angle to be

different from that assumed for a flat surface due to high

spatial resolution of SAR images. The information about

the topography of the study area was quantified by

determining heights through Global Positioning Survey

(GPS) surveys. The GPS derived heights along with

latitude and longitude coordinates of 380 sampling

locations formed the basis of generating a Digital

Elevation Model (DEM), which depicted the spatial

distribution of topography of the area. The DEM was

subsequently used to derive slope and aspect maps; a

pertinent information to be input to the model to minimise

the effect of topography on backscatter coefficient.

Land Cover Map: The land cover map is derived to know

the extent of vegetative and non-vegetative cover (i.e.,
barren land) in the study area. Two land cover maps of the

study were prepared through classification of LISS II and

LISS III images using the most widely used Maximum

Likelihood Classifier (MLC). The land cover maps in the

form of classified images are shown in Fig.1 (a, b). The

pixel wise information about the land cover i.e., type of

vegetation and barren land) at soil sampling locations was

obtained from these maps. This was a necessary input for

the model in order to minimise the effect of vegetation on

backscatter coefficient.

Assessing the Effect of Vegetation on Crop Covered
Backscatter Coefficient: In areas with high topographic

relief, radiometric variations are introduced in the SAR
image. These variations are related to several parameters

such as incidence angle, shadow, image foreshortening

and  image  layover  [27].  The  slope map generated from

4°  only  within  this region. Thus, the area may be

regarded as generally flat and it is, therefore, revealed that

the effect of topography in this study area may be

negligible.

To asses the effect of vegetation on crop covered

backscatter coefficient, a number of approaches [1, 1, 2, 8,

16, 28-30] have been advocated. The basic approach for

estimating soil backscatter coefficient underneath

vegetation, used here, was based on the water cloud

model [2]. In this model, the total backscatter coefficient

recorded by the sensor over the vegetation is represented

by the incoherent sum of the contributions of vegetation

and soil. Vegetation component can be represented by

bulk variables namely LAI, PWC and h as canopy

descriptors. The water cloud model for a given incidence

angle is represented as [8]:

(4)

(5)

 = exp(• 2V B / cos   ) (6)2
2 ref

and (7)

Where,   is the two-way canopy transmitting factor. In2

Eq. (5) and (6), V  and V  are the canopy descriptors, A1 2

and B are coefficients that depend on type of vegetation.

, is the backscatter coefficient of the soil underneath

vegetation which includes soil moisture and soil surface

roughness,  is the backscatter due to vegetation only

and is the total backscatter coefficient over the

canopy as observed by the SAR sensor.

(a) (b)

Fig. 1: Land cover maps of Solani river catchment prepared from (a) LISS II Image of date 23  June 2002 (autumn season)rd

and (b) LISS III image of date 12  March 2004 (spring season)th
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Although, any of the three canopy descriptors can After considering the effect of vegetation, another

be used to represent V  and V , a novel approach based parameter that requires attention is the surface roughness1 2

on regression elimination has been proposed here to and its effect on backscatter needs to be minimised.

consider only single canopy descriptor to further simplify Therefore, an empirical model proposed by Dubois et al.
the water cloud model. To achieve this, three different [22] and given by Eq. (14) was utilized to estimate

scenarios each considering one canopy descriptor at a theoretical backscatter coefficient referred to as calculated

time were framed. This led to three models, given by: backscatter coefficient , of the soil over barren land.

a) Model 1 V  = V  = LAI (8)1 2

b) Model 2 V  = V  = PWC (9)1 2

c) Model 3 V  = V  = h (10)1 2

Model 1 uses LAI, defined as the one-sided green

leaf area per unit ground area and characterizes the

density of vegetation in accordance to the size of the leaf

that actively participates in weakening of the backscatter

coefficient over vegetation [29]. The LAI can be computed

using the following relation,

LAI= N ×A (11)a l

Where, N  is the areal density of the scattering elementsa

which was obtained from field measurements, A  is the onel

sided area of the leaf determined by on-screen digitisation

of leaves on their scanned photographs.

Model 2 uses PWC as the canopy descriptor, which

is defined as the total amount of water (or moisture)

present in the samples of plant leaves and stem. Since,

dielectric properties of the vegetation are governed by

PWC, plays a dominant part in attenuation processes of

the backscatter coefficient [2]. PWC can be computed

from:

(12)

Where, W  and W  are the freshly plucked and oven-driedf d

weights of plant samples collected in the field.

Model 3 uses ‘h’ as the canopy descriptor to

minimize the vegetation influence on the backscatter

coefficient. Plant heights (h) in meters were recorded in

each vegetated covered area by using a surveyor’s

leveling staff.

Thus, LAI, PWC and h values were computed at

sampling locations for different vegetation cover types

under study and were used in Eqs. (4 to 7) to estimate the

backscatter coefficient of the soil underneath vegetation

cover ( ) as:

(13)

The Dubois model incorporates surface roughness,

measured as rms heights of surface determined with the

help of surface roughness profile and dielectric constant

of the soil, represented by ‘s’ and ' respectively in the

following equation:

(14)

Where,  is the wavelength of the incident wave (=5.6

cm),' is the real part of dielectric constant of soil and k is

the wave number, defined as 2/. The calculated

backscatter coefficient ( ), the backscatter coefficient

as estimated from water cloud model ( ) and the

observed soil moisture ( ) obtained from gravimetric

method as a-priori information for each sampling location

were used as input to the nonlinear least squares solver

objective function to retrieve the true soil moisture ( ):

(15)

Where,  and   are the standard deviations of  and1 2

. The function is optimised in an iterative manner

with the aim to minimise the measurement errors in the

observed data.

RESULTS AND DISCUSSION

The DN values of pixels in SAR images that

correspond to the sampling locations in the field were

extracted and were used to compute the backscatter

coefficient (°) at each location via Eq. (2). These were

termed as the direct backscatter coefficient ( ). The

range of values (maximum and minimum) of   andi

observed  soil  moisture, m , for three seasons are given inv
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Table 1: Variance explained by the relation between  with m , Maximum (Max) and minimum (Min) values of ,   and m  for data of three seasonsv i v

Backscatter coefficient Local incidence Soil moisture

(dB) angle   (degrees) m (%)i v

Total number ---------------------------------- -------------------------------- ----------------------------

S No. SAR images Land cover class of samples Max Min Max Min Max Min R2

1 Autumn season Sugarcane 20 -15.23 -16.65 23.43 22.04 58.5 26.9 0.65

Cherry 20 -17.73 -20.88 23.23 21.73 56.6 20.4 0.66

Rice 21 -22.37 -25.45 23.23 22.04 61.6 16.0 0.66

Grassland 31 -24.47 -27.99 23.41 21.74 58.4 23.8 0.67

Barren land 20 -26.91 -31.58 23.14 22.16 43.6 15.5 0.74

2 Spring season Sugarcane 31 -14.62 -16.56 23.03 21.86 58.7 28.0 0.64

Wheat 20 -17.37 -18.81 23.03 21.54 56.5 21.2 0.65

Grassland 31 -25.36 -28.41 23.21 21.54 60.0 28.0 0.67

Barren land 20 -26.22 -29.09 22.95 21.97 38.7 15.2 0.72

3 Summer season Sugarcane 31 -14.02 -16.81 23.84 21.96 62.0 26.9 0.63

Wheat 20 -17.07 -19.81 23.13 21.64 52.3 26.4 0.64

Grassland 31 -24.50 -28.00 23.31 21.65 54.0 26.8 0.69

Barren land 20 -26.14 -29.11 23.05 22.07 38.7 15.2 0.72

Table 2: Maximum (Max) and minimum (Min) values of N , LAI, PWC and h for three seasonsa

Areal density (N ) LAI (m /m ) PWC h (m)a
2 2

------------------------------------- -------------------------------- -------------------------------- ---------------------

S.No SAR images Land cover class Max Min Max Min Max Min Max Min

1 Autumn season Sugarcane 804.23 671.53 5.927 5.434 0.738 0.726 1.650 1.649

Cherry 631.52 449.43 5.330 4.400 0.692 0.676 1.260 1.248

Rice 3014.35 1479.71 3.740 2.400 0.657 0.619 0.780 0.770

Grassland 20000.00 3720.93 3.170 0.500 0.269 0.175 0.211 0.209

2 Spring season Sugarcane 725.5 570.95 5.260 4.620 0.861 0.764 1.673 1.607

Wheat 615.42 518.45 5.510 4.870 0.634 0.622 1.267 1.242

Grassland 22016.53 6087.89 2.680 2.360 0.540 0.120 0.210 0.209

3 Summer season Sugarcane 777.47 596.24 5.800 4.850 0.920 0.760 1.661 1.628

Wheat 588.95 464.26 5.280 4.430 0.627 0.590 1.253 1.252

Grassland 17933.88 3135.39 2.170 1.220 0.229 0.225 0.196 0.195

Table 1 and these indicates the relative response of green surface roughness which may have scattered the  in

vegetation, surface roughness height and topography

towards backscatter coefficient.

The R  values in Table 1 indicate a relatively weak2

correlation between  and m  for the data collected at allv

sampling locations. Further, relatively lower correlations

(R ~ 0.63 to 0.66) between  and m were observed for2
v

samples collected from vegetative surfaces in contrast to

barren fields (R  ~ 0.71 to 0.74) for the three seasons. The2

grassland represented short sparsely covered grass

plants that contributed less towards attenuation of ,

which resulted in higher correlations (R ~0.67 to 0.68) for soil moisture was found to be relatively insignificant and2

this land area than other vegetated surfaces. The therefore has not been reported here.

sugarcane covered land for all the three seasons resulted

in lower R  values, which may be attributed to the fact that Effect of Vegetation: The direct backscatter coefficient2

sugarcane crop being much larger in height and denser ( ) was refined by reducing the effect of vegetation

than the other vegetated surfaces and thus produced

more attenuation of the  values. The low correlations

over the barren land may be attributed to the presence of the  effect  of  vegetation via water cloud model has been

this case.

These observations further corroborates our belief

that that  can not be directly related to volumetric soil

moisture and the effects of topography (if present),

vegetation cover and surface roughness on  need to

be considered for further improvement of the sensitivity

of backscatter coefficient for accurate retrieval of crop

covered soil moisture from SAR images. Also, the area

was topographically flat; the effect of topography on

backscatter coefficient for the estimation of volumetric

through implementation of the semi-empirical water cloud

model. Backscatter coefficient estimated after minimising
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Table 3: Variance explained by the relation between  with m  for the data of three seasonsv

Model 1 (LAI) Model 2 (PWC) Model 3 (h)

------------------------------ ------------------------------ ------------------------------

S. No. SAR Images Land cover class R R R2 2 2

1 Autumn season Sugarcane 0.84 0.71 0.68

Cherry 0.85 0.71 0.68

Rice 0.86 0.72 0.69

Grassland 0.86 0.73 0.70

2 Spring season Sugarcane 0.84 0.72 0.71

Wheat 0.84 0.72 0.72

Grassland 0.85 0.74 0.74

3 Summer season Sugarcane 0.84 0.73 0.73

Wheat 0.85 0.74 0.74

Grassland 0.86 0.74 0.75

termed as direct-vegetation corrected backscatter the  leaf  that   actively   participates   in   weakening   of

coefficient ( ). To simplify the water cloud model,

three important vegetation descriptors, namely, LAI, PWC
and h were used separately resulting into three different

models. The range of estimated values of N , LAI, PWCa

and h are given in Table 2, which clearly indicates that

sugarcane crop due to their mature stage and thick

density of cropping has higher values of LAI and PWC
over other crops. Also, the values of h for sugarcane crop

are more due to the moist soil and leaf foliage on the soil

surface.

The values of coefficients of water cloud model (i.e.,
A and B) depend on the type of vegetation descriptor (i.e.,

LAI, PWC and h). These coefficients were estimated for

each descriptor using Quasi-Newton minimisation

algorithm by inputting the in-situ measured values of LAI,
PWC and h individually. The coefficients C and D were

obtained by establishing a regression relationship

between  and m  for the barren land.v

Once the coefficients were estimated, were

computed separately for the three models using Eq. (4).

To assess the effect of each vegetation descriptor on

backscatter coefficient, regression elimination approach

was adopted. This led to identification of a single

vegetation descriptor that has maximum impact in

weakening of the SAR signal. Results of regression

between  obtained from three models and observed

m  in terms of R  values are given in Table 3.v
2

Clearly,   a  significant   increase   in   R   values2

(Table 3) can be observed over those given in Table 1, for

each vegetative cover. This is particularly true in case of

Model 1 which utilises LAI as the vegetation descriptor.

This may be due to the fact that LAI is characterised by

the  density  of  vegetation  in accordance  to  the  size  of

the backscatter coefficient through the vegetation layer

[6, 11, 29].

In the present study, the effect of dielectric constant

of vegetation on backscatter coefficient was found to be

less than that by LAI. Similarly, the third vegetation

descriptor, h, also exhibited the lowest effect on the

backscatter coefficient. 

The scatter  plots  between  obtained from

model 1 and observed m  for all vegetative surfacesv

corresponding to autumn season are shown in Figure 2.

Thus, water cloud model with LAI as vegetation

descriptor  showed  a  significant effect on ° and

therefore has been used further for the retrieval of soil

moisture.

Retrieval of Soil Moisture Through non Linear Least
Squares  Method:  An  empirical model proposed by

Dubois et al. [22] was used to compute the backscatter

coefficient, referred here as ( ). The model

incorporates two key parameters (i.e., surface roughness

and the dielectric constant) of the soil. The rms surface

roughness heights (s) were computed mechanically using

surface roughness profiler. The   computed from the

Eq. (4),  obtained from Dubois model along with the

observed soil moisture ( ) were input to the least

squares method (LSM) for the estimation of volumetric

soil moisture ( ). The LSM derived soil moisture was

conceived to be the refined or adjusted soil moisture free

from the in-situ measurement and calibration errors. For

illustration, scatter plots between averaged  and

for  sampling  locations  over  barren  and  vegetated
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(a) (b)

(c) (d)

Fig. 2: Scatter plots between  and mv for all vegetation classes corresponding to autumn season (N: number of soil

sampling locations)

(a) (b) (c)

(d) (e)

Fig. 3: Scatter plots between  and for all land cover classes corresponding to autumn season (N: number of

soil sampling locations)
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Fig. 4: Soil moisture  map  of  Solani  river  catchment prepared from SAR image acquired in autumn season (i.e., of date

28  July 2003). th

Fig. 5: Soil  moisture  map  of Solani river catchment prepared from SAR image acquired in spring season (i.e., of date

29  March 2004). th

surfaces corresponding to the autumn season is shown in and the estimated soil moisture via LSM (i.e.,  and

Figure 3. It can be seen that for all the cases, R  values2

were found to be higher than 0.94, which represent a

strong agreement between  and . Further, in

order to examine the goodness of fit of the data processed

in LSM, an F-ratio test between  and  was also

performed at 95% confidence level for all the cases.

Generation of Soil Moisture Maps: Volumetric soil

moisture estimated from LSM ( ) was regressed with

. On comparing the R  values (for all models), it can2

be inferred that relation  between  backscatter  coefficient

) is stronger than the relation between direct

backscatter coefficient  and the in-situ observed soil

moisture, m .v

The soil moisture maps generated for the three

seasons depict the spatial variations of soil moisture in

the study area. The maps thus derived were compared to

the actual soil moisture conditions on the concurrent

dates of image acquisitions. It is to mention that the night

before the date of autumn image acquisition experienced

rainfall, which resulted in the increase of soil moisture in

most   of  the  agricultural  fields within  the  study  area.
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Fig. 6: Soil moisture map of Solani river catchment  prepared  from  SAR  image  acquired  in  summer  season  (i.e.,  of

date 3  May 2004).rd

This feature is clearly evident in the soil moisture map error of ± 10% in all the cases. This independent

produced in Figure 4, which reveals that most of the area evaluation further substantiates the fact that the

is covered with 50% to 60% range of the volumetric soil proposed approach can retrieve soil moisture at spatial

moisture. Similar inferences can also be made for the maps level from SAR images with high accuracy in the

generated for the other two seasons (Figure 5 and 6), catchment of Solani river.

which show soil moisture variation from 20% to 30%

considering the fact that these two seasons were CONCLUSIONS
relatively dry due to the scanty rainfall in the antecedent

periods. The soil moisture values at a few locations in the In this paper, an approach based on semi-empirical

maps of spring and summer seasons have been estimated water cloud model was developed for the estimation of

as more than 50%. This may be attributed to the reason soil moisture from ERS2 SAR images by reducing the

that the barren fields were irrigated up to the saturation effect of vegetation on backscatter coefficient. The aim

level in these seasons as these were being prepared for was to simplify the model by minimizing the inclusion of

the cultivation of next crop. a number of vegetation descriptors in the water cloud

Such soil moisture maps produced from this study for model. The study area belonged to Solani river catchment,

three seasons may be of vital importance and can be used India. were compared. Amongst the three crop descriptors

to represent the soil moisture state of the catchment that namely LAI, PWC and h studied, the LAI was found to be

is a key input for Physics-based distributed storm-event the best descriptor in minimising the effect of vegetation

rainfall-runoff soil erosion models. These maps may also on soil moisture retrieval from SAR images. Close

find their usefulness for many other hydrological agreement (R  > 0.95) between the retrieved soil moisture

applications such as in planning, designing and and the corresponding observed volumetric soil moisture

scheduling of irrigation systems. was observed for both barren as well as vegetative

Model Validation: From the maps, the volumetric soil approach suggested.

moisture at each pixel can be obtained. In order to further The  use  of  a  single  canopy  descriptor  (i.e., LAI)
validate the developed approach, an independent sample in   the    water    cloud    model    is    the    major   finding

of data consisting of 20% of sampling locations of barren of  the   present  study.  Since  LAI  information can  now

land and vegetated surfaces in all the three seasons was be  extracted  from  optical  remote  sensing  data at

utilised and compared with the soil moisture values spatial level its use in Physics based models shall assist

extracted from the maps at the sampling locations. Results in production of soil moisture maps with high degree of

reveal that soil moisture may be estimated with a maximum accuracy.

2

surfaces. This clearly demonstrates the applicability of the



4  International Conference on Water Resources and Arid Environments (ICWRAE 4): 781-792th

791

Future research may, however, be targeted to include the characterization of soil surface parameters over

other RADAR configurations (e.g., multi-polarisation and

multi-incidence angle) in a variety of field conditions

before the use of present approach can be recommended

at the operational level.
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