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Abstract: Fuzzy concepts and related inferences have been proposed a new approach to human modeling and

calculation methods. Although, different powerful fuzzy modeling methods have been developed up to now,

but some of these methods are different with real human modeling method, because of utilized mathematics and

exact calculations in their constructions. Active Learning Method (ALM) is a fuzzy modeling method which

uses a very basic level of mathematics. ALM has been innovated in 1997 and a new modified ALM developed

in 2007. ALM has very simple algorithm that avoids of mathematical complexities. In this study, novel modified

ALM has been utilized for the simulation of daily runoff in Karoon basin (one of the most important basins in

Iran). Hence, the daily discharge data of Karoon River in Pol-e-Shaloo station from 1991 until 1999 were gathered

for  modeling.  The  first  five  years (1991-1995)  were  used  for  the training of ALM model and the residual

data were  used  for the test of trained model. The impacts of changing the fuzzification points on the

simulation results were investigated and the results showed that ALM for simulation of daily runoff is not

sensitive to the position of fuzzy dividing points and best positions were determined. At the first step of

modeling, the input data used for ALM modeling were daily precipitation, temperature, humidity and vapor

pressure with different time lags. In this study, several statistical (The Nash-Sutcliffe, R , Bias, Root mean2

square error (RMSE), peak weighted RMSE (PWRMSE) and Percent of total volume error (PTVE) values) and

graphical  (hydrograph,  scatter  plot  and  quantile-quantile)  criteria  were  used  for  the  evaluation of the

ALM  modeling results.  NS,  R ,  Bias, RMSE, PWRMSE and PTVE of the tested ALM model with 32 fuzzy2

rules  for  daily  runoff  modeling were 0.29, 0.33, 65.8 (cms), 265.4 (cms), 418.9 (cms) and 22.3%, respectively.

In general, the results of daily runoff simulation were not so good. Hence, in the next step of modeling, the daily

discharges with different lags were added to the previous input dataset. The results showed that ALM with

32 rules is  the  best  model  for  runoff  simulation.  NS, R , Bias, RMSE, PWRMSE and PTVE of the tested2

ALM model with 32 fuzzy rules for daily runoff modeling were 0.75, 0.75, 1.3 (cms), 157 (cms), 357 (cms) and

0.5%, respectively. These excellent results demonstrated the effect of adding discharge data to input dataset

and  showed  the ALM  ability  for  daily runoff simulation. ALM could identify and rank the important

variables for runoff simulation and determined that temperature and vapor pressure are unnecessary variables.

In addition, training of ALM is very easy and straightforward in comparison with other artificial intelligence

methods such as ANN (Artificial Neural Networks) and ANFIS (Adaptive Neuro-Fuzzy Inference Systems).

Therefore, according to the ALM abilities, it has merit to be introduced as a novel and appropriate modeling

method for the runoff simulation.
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INTRODUCTION agricultural water management, water shortages

Runoff simulation is a very important subject for and drought prediction and management. Models can lead

engineers and hydrologists. Estimation of river flow can us to simulate the precipitation-runoff process and

have a significant economic impact, as it can help in forecast  the  stream flows. Many techniques are currently

management,  water  resources  management and flood



4  International Conference on Water Resources and Arid Environments (ICWRAE 4): 131-140th

132

used for modeling of hydrological process and generating The watershed boundaries are 49°,30' to 52° E and 30° to

of synthetic stream flow. One of these techniques is 32°, 30' N  and  its  area  is  approximately 24200 km  with

physically  based  conceptual modeling methods which 30 reliable climatology and synoptic gauges. The

are specially designed to mathematically simulate the sub elevation varies from 700m at the Pol-e-Shaloo

processes and physical mechanisms which are related to hydrometric station (outlet of the Karoon III basin and

hydrological cycle. These models usually incorporate upstream of Karoon III dam) to 4500m on Kouhrang and

simplified forms of physical deterministic laws that are Dena Mountains. Digital elevation model (DEM) and

representative  of watershed characteristics that play a major drainage system of basin is shown in Figure 1.

role in these [1]. For a case which has insufficient or no About 50% of the watershed area has higher elevation

measured data of watershed characteristics, data-driven than 2500m. The watershed receives an average annual

models  are  usually used to obtain the flow data [2]. precipitation of 767 mm that about 55% of precipitation is

These models are more useful since they can be applied as snowfall. The average daily discharge flow of Karoon

easily  and  avoid of conceptual models complexities. III basin is about 384 m /sec.

Most frequently used of these models are regression

models, time series models, artificial neural network (ANN) Algorithm of Active Learning Method: Here, ALM

and fuzzy logic (FL). ANN is one of the most frequently algorithm is described briefly. For details about ALM

used methods in the last fifteen years. This method is algorithm refer to [24, 25]. The different steps of ALM

quite suitable for non-linear systems. Many researchers algorithm has been presented in Figure 2. Step 1. The

have utilized of ANN for prediction of stream flow [1-15]. input-output data of the studied system are gathered.

Early information on principles of fuzzy logic was

suggested by [16] and although it was thought in the Step 2: The gathered data are projected on the x–y planes

beginning that it did not comply with scientific principles, and for each variable a x-y plane is drawn. Figures 3a and

it demonstrated itself by an application made by [17]. 3b shows the data of a dummy two variables problem,

Fuzzy logic system can model human’s knowledge projected on x -y and x -y planes, respectively.

qualitatively and avoid of delicate and quantitative

analyses. Today it almost can be applied to the all of the Step 3: The Ink Drop Spread (IDS) operator is used to find

engineering fields. Several studies have been carried out continuous paths (general behaviors or implicit non-linear

using fuzzy logic in hydrology and water resources functions) on each x–y plane. IDS is a fuzzy interpolator.

planning [18, 19, 11, 21, 22] suggested a new fuzzy In IDS method, each data point in each plane is assumed

modeling technique similar to the human modeling to be a light source with a cone-shaped illumination

method, which not only uses basic mathematics, but can pattern. As the distance from these light sources

also  be  implemented  by  biological  neural networks. increases, their illumination patterns interfere and new

This method, entitled the active learning method (ALM), bright areas are formed. Figures 3c and 3d show the

has a simple algorithm and avoids mathematical results  of application of the IDS method on Figures 3a

complexities and its accuracy increases by increasing the and 3b, respectively. By applying the centre of gravity

number of iterations [23] developed new heuristic search, method on Figures 3c and 3d continuous paths are

fuzzification and defuzzification methods for ALM extracted (Figures 3e and 3f). These paths are one-variable

algorithm and a novel modified ALM was generated, nonlinear implicit functions.

which will be utilized in this study.

Up to now, no research has been performed using the Step 4:  Subsequently,  the deviation of data points

ALM on the stream flow modeling, hence the ALM is around each continuous path (error of each continuous

used for stream flow modeling in this study and its path) can be calculated by various methods such as the

performance is evaluated. coefficient of determination (R ), the root mean square

MATERIALS AND METHODOS (MPAE).

Case Study: The Karoon III basin (subbasin of large Step 5: The path with smaller deviation or error is selected

Karoon) is located in the southwest of Iran and that is one according to the deviation or error, calculated in step 4

of the most important subbasins of Persian Gulf basin. and then it is saved.

2

3

1 2

2

error (RMSE) or the mean percent of absolute error
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Fig. 1: DEM & major drainage network of Karoon III basin (subbasin of large Karoon)

Fig. 2: Proposed algorithm for Active Learning Method
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Fig. 3: (a) Projected data on x –y plane, (b) projected data on x –y plane, (c) results of applying the IDS method to the1 2

data points in the x –y plane, (d) results of applying the IDS to the data points in the x –y plane, (e) extracted1 2

continuous path by applying centre of gravity method on figure 3c and (f) extracted continuous path by

applying centre of gravity method to figure 3d 

Step 6: In the first iteration of algorithm the system can be complicated fuzzy dividing method that typical

modeled using the only one path, saved in the step 5. fuzzification methods are not compatible with it, therefore,

Hence, there is only one rule. After the next iterations of a new simple fuzzy modeling method (fuzzification and

ALM algorithm, the space of variables is divided to some defuzzification), developed by [23] was utilized, which is

subspaces  and number of rules in the generated fuzzy attuned to the developed heuristic search method. For

rule base is equal to the number of subspaces. Since the detail about this new fuzzy modeling in the ALM

new heuristic search method, used in Step 9 is a algorithm see [23, 24].
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Step 7: The error of modeling is calculated using the with the different time lags were used for ALM modeling

generated fuzzy rules. and consequently, runoff simulation. It seems that the

Step 8: If the error of modeling is more than predefined with different time lags. Therefore, effect of adding

error, then the Step 9 is performed, else the step 10 is discharge  data  to  input dataset was investigated.

activated and the procedure of ALM modeling is stopped. Variety of statistical (mean percent of absolute error

Step 9: Using a heuristic search method, the space of Nash-Sutcliffe efficiency (NS), root mean square error

variables should be partitioned to some subspaces fuzzily (RMSE), percent of total volume error (PTVE) and peak-

and then ALM procedure should be iterated from step 2 weighted root mean square error (PW-RMSE)) and

for each subspace independently. Fuzzy partitioning of graphical goodness of fit criteria (Quantile-Quantile (Q-Q)

multi-dimensional  space  is a combinatorial problem. Diagram, scatter plot and hydrographs) were used for the

There is no theoretical approach for it; therefore, heuristic comprehensive evaluation of the modeling results.

search methods are used [26]. The heuristic search is a

guided search and it does not guarantee an optimal RESULTS AND DISCUSSION
solution.  However,  it can often find satisfactory

solutions [27]. [23] developed a new heuristic search Appropriate Fuzzy Points Determination: For

method for fuzzy dividing of space in the ALM algorithm. determination of appropriate fuzzy points, ALM modeling

In this heuristic search method, the global error decreases was performed with some dividing alternatives (20%, 40%,

simultaneously by decreasing the local errors. Here, this 50%, 60% and 80% of data are common in the small and

novel heuristic method is utilized. big parts) using daily precipitation, temperature, humidity,

Runoff  Simulations by  ALM  and Evaluation Criteria: input data. The results of ALM modeling have been

In this study, ALM has been utilized for the simulation of exhibited in Figure 4. This figure shows that ALM is not

daily runoff in Karoon III basin. The Precipitation, so sensitive to the location of fuzzy points and the NS

temperature, humidity, vapor pressure and daily discharge values show that model efficiency for different states from

data of Karoon River in Pol-e-Shaloo station from 23 Sep 40% to 80% are almost equal, hence the first and third

1991 to 22 Sep 1999 were utilized for modeling. The first quarters of data were selected as fuzzy dividing points

five years (23 Sep 1991 to 22 Sep 1996) were used for the and utilized in this study.

training of ALM model and the residual data were used

for the test of trained model. In spite of many other Runoff Simulation Without Discharge Data: The daily

modeling methods (e.g. ANNs), the ALM does not need precipitation, temperature, humidity and vapor pressure

initial  parameters  to start the training and thus it does data with four time lags were used as input data for ALM

not repeat the training, hence ALM training is very easy modeling  (without  discharge  data  as input variable).

and straightforward and it is not time consuming [24]. The model output was discharge values of Karoon River

When we divide the domain of a variable fuzzily, then in the Pol-e-Shaloo station. The statistical results of the

some of the data can be shared in small and big parts of simulated flow data for the training and testing phase of

the variable domain. The percent of common data in the ALM modeling with different number of fuzzy rules are

small and big parts is related to the fuzzy dividing points. presented in Table 1.

The fuzzy systems are not too sensitive to the dividing Table 1 shows that simulation of stream flow using

points. Therefore, the appropriate points for fuzzy precipitation, temperature, humidity and vapor pressure

dividing can be calculated by investigating various data present improper results. For example, in the best

alternatives to select the most appropriate one [28, 24] results (ALM model with 32 fuzzy rules) the values of

showed that the first and third quarters of data are best Nash-Sutcliffe and R  don’t exceed from 0.40 in the testing

dividing points. At the first stage, ALM is applied to the phase. Nash-Sutcliffe efficiency coefficient value less

total datasets (precipitation, temperature, humidity, vapor than 0.5 are considered as unacceptable, while values

pressure and discharge data) and the appropriate points greater  than  0.6  are  considered as good and greater

for fuzzy dividing were determined. Then, daily than 0.8 are considered excellent results [29]. Therefore

precipitation, temperature, humidity and vapor pressure the   statistical   goodness   of   fit   criteria   demonstrate

appropriate  correlation exists between discharge data

(MPAE), coefficient of determination (R ), mean bias,2

vapor pressure and discharge with different time lags as

2
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Table 1: Statistical goodness of fit criteria for runoff simulation using ALM without discharge data as input variable at different number of fuzzy rules in

the training and testing phase

Nash-Sutcliffe Bias R2 MPAE PTVE RMSE PW-RMSE

---------------- ----------------- ----------------- ----------------- ----------------- ------------------- -------------------

Train Test Train Test Train Test Train Test Train Test Train Test Train Test

2 rules 0.31 0.13 6.2 133.4 0.31 0.31 82.5 114.1 1.40 45.2 315.6 293.7 403.0 431.0

4 rules 0.39 0.22 -2.2 109.9 0.41 0.35 72.3 108.4 -0.51 37.2 295.7 276.6 383.5 420.2

8 rules 0.43 0.24 -8.2 99.4 0.45 0.34 67.9 103.2 -1.80 33.7 286.9 273.0 374.5 420.5

16 rules 0.46 0.27 -23.8 83.8 0.49 0.34 62.0 95.5 -5.40 28.4 279.6 268.9 369.7 419.0

32 rules 0.47 0.29 -42.5 65.8 0.50 0.33 56.4 90.1 -9.70 22.3 276.3 265.4 367.7 418.9

64 rules 0.48 0.29 -53.7 51.8 0.51 0.31 52.5 86.5 -12.20 17.5 274.3 265.3 365.4 426.3

128 rules 0.49 0.28 -60.3 41.9 0.53 0.30 49.5 114.1 -13.70 14.2 270.1 266.6 358.9 435.7

Fig. 4: Effect of changing fuzzy points on the NS values of data gauges and lumped modeling of very large

(model efficiency) of ALM model in the testing watershed are the factors of complexity of ALM modeling

phase at different number of fuzzy rules (SD: without discharge data as input variable.

Shared Data).

the   inappropriate    results    of    fuzzy    modeling. Table 2, the appropriate correlation between discharge

Figures 5 and 6 show the comparison between simulated data can be observed. Hence, discharge data from 1 to 5

and observed hydrographs and scatter plot and Q-Q time lags were added to the previous input dataset. ALM

diagram of ALM model, developed using 32 fuzzy rules, was trained and tested with new dataset. Statistical results

respectively. These graphical criteria confirm that of ALM in training and testing phase have been

simulation has not performed in an appropriate manner. presented in Table 3.

The reason of this improper estimation of ALM is the

very low correlation coefficient between inputs data

(precipitation, temperture, humidity and vapor pressure)

and output (discharge) (Table 2). Therefore, ALM could

not estimate the stream flow from this data in an

appropriate  manner.  In  spite  of  conceptual  model,

ALM disregards the physics of problem and trying to

extract the knowledge from the correlations between

inputs data and output.

In addition, existence of very intense peaks, high

kurtosis  and  skewness  of  input-output  data,  many

outlier data, large area, very high elevation range and

heterogeneous characteristics of watershed, long-term

simulation and different conditions of modeling, scarcity

Runoff Simulation with Discharge Data: According to

Fig. 5: Observed hydrograph (black line) and simulated hydrograph (red line) using ALM with 32 fuzzy rules in the test

phase (discharge data were not used as input data)
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Table 2: Correlation coefficient between input data with different time lags and output (discharge with lag 0)

Lags Precipitation Temperature Humidity Vapor pressure Discharge

0 0.174 0.039 0.101 0.013 --

1 0.289 0.039 0.117 0.021 0.815

2 0.172 0.041 0.108 0.015 0.620

3 0.102 0.045 0.095 0.007 0.535

4 0.068 0.050 0.088 0.003 0.486

5 -- -- -- -- 0.457

Table 3: Statistical goodness of fit criteria for ALM model at different fuzzy rules in training and testing phase

Nash-Sutcliffe Bias R2 MPAE PTVE RMSE PW-RMSE

---------------- ----------------- ----------------- ----------------- ----------------- ------------------- -------------------

Train Test Train Test Train Test Train Test Train Test Train Test Train Test

2 rules 0.84 0.73 -7.9 19.7 0.84 0.75 19.6 34.5 -1.8 6.6 151 162 244 355

4 rules 0.85 0.73 -2.4 18.8 0.85 0.74 15.0 27.4 -0.56 6.4 147 162 240 357

8 rules 0.85 0.73 -1.8 11.7 0.85 0.74 12.0 19.6 -0.41 3.9 145 162 237 359

16 rules 0.85 0.74 -5.6 5.92 0.86 0.75 10.3 15.8 -1.20 2.0 143 158 235 357

32 rules 0.85 0.75 -10.0 1.30 0.86 0.75 9.20 13.0 -2.30 0.5 143 157 236 357

64 rules 0.85 0.75 -14.5 -1.2 0.86 0.76 9.31 12.5 -3.30 -0.4 146 157 239 357

128 rules 0.85 0.75 -14.9 -2.3 0.86 0.76 9.10 11.6 -3.40 -0.8 146 157 239 356

Fig. 6: Scatter plot and Q-Q diagram of ALM model with 32 fuzzy rules in the test phase (discharge data were not used

as input data)

Fig. 7: Observed hydrograph (black line) and simulated hydrograph (red line) using ALM with 32 fuzzy rules in the test

phase (discharge data were used as input data).
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Fig. 8: Scatter plot and Q-Q diagram of testing phase with 32 fuzzy rules (discharge data were used as input data)

Table 4: Results of ranking the variables according to their roles in the

dividing variable and one-variable functions

Number of used for Number of used for

Variable Dividing variable 1-Variable function

Precipitation Lag0 0 0

Precipitation Lag1 4 0

Precipitation Lag2 1 0

Precipitation Lag3 1 0

Precipitation Lag4 0 0

Discharge Lag1 11 62

Discharge Lag2 3 0

Discharge Lag3 1 0

Discharge Lag4 0 0

Discharge Lag5 1 0

Temperature Lag0 0 0

Temperature Lag1 0 0

Temperature Lag2 0 0

Temperature Lag3 0 0

Temperature Lag4 0 0

Humidity Lag0 8 0

Humidity Lag1 0 0

Humidity Lag2 0 0

Humidity Lag3 1 0

Humidity Lag4 0 0

Vapor Pressure Lag0 0 0

Vapor Pressure Lag1 0 0

Vapor Pressure Lag2 0 0

Vapor Pressure Lag3 0 0

Vapor Pressure Lag4 0 0

Table 3: shows that the ALM could simulate the

stream  flow  appropriately.  In  addition,   after  32 rules

(64 and 128 rules) there is no significant improvement in

the  ALM  simulation  results.  Hence,  ALM model with

32 rules is chosen as the best ALM model. Comparison of

Table 1 and 3 shows the role of basin discharge in the

modeling results. ALM could truly identify the

appropriate  variables   and   extract   the   knowledge   of

the dataset. Figure 7 shows the comparison between

observed hydrographs and simulated hydrograph using

ALM  with  32  fuzzy  rules.  In  Figure   8,   scatter  plot

and  Q-Q  diagram  of  ALM modeling with 32 fuzzy rules

are  presented.  According  to   these   graphical   results,

it is possible to judge that ALM has been able to simulate

runoff  appropriately.  But  the  hydrograph  (Figure 7)

and  scatter  plot  and  Q-Q diagram (Figure 8) imply that

for the high values of discharge and peak values, the

ALM underestimate the runoff values. This subject can

be proved by higher PW-RMSE values than RMSE.

Totally, ALM with 32 fuzzy rules could simulate the

stream flow and present appropriate results.

It is very easy to find the important or divided

variables and one-variable function in each step of the

ALM  modeling. Consequently, the variables can easily

be ranked according to their roles in modeling. Consider

the ranking criterion for variables; used in one-variable

functions is the number of subspaces that have been

estimated using each variable. The results of ranking

using this method has been presented in Table 4 and it

shows that the most important variable is discharge with

one time lag (62 times). According to Table 2, ALM could

find the best variable for modeling.

Similarly, suppose that the ranking criterion for the

variables; used for dividing is the dividing times for each

variable. Hence, according to Table 4, discharge with one

time lag (eleven times) is the most important variable for

dividing the space. Then humidity with lag 1, precipitation

with lag 1 and discharge with lag 2 were determined as

other important variables for dividing of space of

variables  in  runoff  simulation  problem. In addition,

Table 4 shows that vapor pressure and temperature have

no role in the modeling and these variables are

unnecessary variables for modeling.

According to these results, the ALM is able to find

and rank the effective variables in complicated nonlinear

systems. Therefore, the ALM modeling can be performed

using the mentioned data instead of many different

variables and different time lags, utilized in this study.
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CONCLUSION 4. Saad, M., P. Bigras, A. Turgeon and R. Duquette,

The ALM is not sensitive to the fuzzy dividing

points and NS values for different fuzzy dividing points

are almost equal.

When the daily temperature, vapor pressure,

precipitation and humidity data with different time lags

were utilized as inputs for daily runoff modeling by ALM,

the modeling results are not so good. The best ALM

model had 32 fuzzy rules. NS, R , Bias, RMSE, PWRMSE2

and  PTVE of the tested ALM model with 32 fuzzy rules

for daily runoff modeling were 0.29, 0.33, 65.8 (cms), 265.4

(cms), 418.9 (cms) and 22.3%. This weakness is highly

related to the very low correlation coefficient between

input variables and output (river discharge).

When the discharge data with different lags are

added to the list of input variables, the results of daily

runoff modeling by ALM improved very much and the

ALM presented appropriate daily runoff simulation.

Again, the best ALM model had 32 fuzzy rules. NS, R ,2

Bias, RMSE, PWRMSE and PTVE of the tested ALM

model with 32 fuzzy rules for daily runoff modeling were

0.75, 0.75, 1.3 (cms), 157 (cms), 357 (cms) and 0.5%.

ALM has some advantages that there is no in other

famous artificial intelligence methods such as ANN and

ANFIS. ALM training is not time consuming and it is very

easy and straightforward. In addition, ALM could find

and rank the input variables and remove the unnecessary

variables from modeling. In the daily runoff simulation,

ALM found that discharge with one day lag is the best

variable for modeling and it found that the other important

variables  are precipitation and humidity. In addition,

ALM found that temperature and vapor pressure are

unnecessary variables and removed them from modeling.

In general, the modified ALM, used as the first time for

daily runoff modeling, has merit to be introduced as a

novel and appropriate modeling method for the runoff

simulation.
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