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Abstract: Streamflow forecasting has a great significance in hydrology, water resources planning and

management studies. Either long term or short term forecasts of streamflows are necessary to optimize the

operation of water resources systems. Artificial neural networks (ANNs), which is a popular widely used

Artificial Intelligence (AI) method, is relatively new nonlinear statistical approach which has the capability to

model complex nonlinear hydrological processes without physical expression. It is an alternative modelling

approach that is inspired by brain and nervous systems to conventional hydrological models. This paper

describes implementation of an ANN to forecast catchment flows in a snow dominated mountainous basin

named Karasu Basin, which is the headwater of Euphrates Basin in Turkey. Due to non-availability of proper

snow data, catchment flows were predicted by using only meteorological data. A best meteorological data set

was investigated to achieve best performance of the model. Results of ANN model simulations were compared

with the well-established conceptual index models, Hydrologic Engineering Center-Hydrologic Modeling

System (HEC-HMS) and Large Basin Runoff Model (LBRM).

Key words:Hydrological modelling •  Artificial Neural Networks •   Catchment  flow • Streamflow  estimation
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INTRODUCTION classified as either deterministic or stochastic. These

Streamflow   forecasting   has   a   great   significance distributed model. Moreover, hydrological models can be

in hydrology,  water  resources  planning  and evaluated under three titles: statistical models also known

management studies. Either long term or short term parametric or empirical models, conceptual models and

forecasts of streamflows are necessary to optimize the physically based models. Physically based models are

operation of water resources systems. In addition, based on mass-energy balance and have physical

accurate  flow  forecasts  strongly   influence   feasible meaning [5]. On the other hand, conceptual models are

river  management  [1].   Thus,   streamflow   simulation mainly based on mass conservation in association with

and  forecasting  has  been  one  of  the  most  important simplified representation of momentum and energy

tasks  in  efficient  water  resources   planning,   design equations.  Both  physically  based  and  conceptual

and management for hydrologists. There are many papers models require parameters associated with the basin

in literature on streamflow simulation and forecasting. characteristics which are not always available particularly

Most of those papers focused on ungauged flow for study regions in developing countries. In addition,

estimations  based  on  historical  streamflow data [2, 3] complicated mathematical interactions, large amount of

and streamflow prediction based on meteorological input calibration data, overparameterisation effects and

data [4]. parameter redundancy impacts are the drawbacks of

Hydrological models are simplified, conceptual physically based and conceptual models. Hence, it is

representation of hydrological cycle. Hydrological models reasonable to apply alternative tools which can model

have  been used by hydrologists for the comprehension relation between input and output data set without

of hydrologic processes including simulation and absolute physical meaning. Artificial Neural Networks

estimation of hydrologic unknowns such as catchment (ANNs) can be used as an alternative modelling tool to

flows for many decades. Hydrological models can be physically based and conceptual models.

models are often classified lumped, distributed and semi
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Fig. 1: Location map of Karasu Basin [29]

ANNs are flexible mathematical structure with the mountainous basin named Karasu Basin, which is the

ability of defining sophisticated nonlinear relationship headwater of Euphrates Basin. Very few of the past ANNs

between input and output parameters without a need to based flow forecasting studies considered snow related

solve complex partial differential equations. As a black phenomena. In Karasu Basin, majority of the flow consists

box model, ANNs can be evaluated under empirical of snow melting. Prediction of catchment flow in Karasu

hydrological models title. ANNs were introduced to Basin has got a high significance. However, so far there

literature early 1940s by McCulloch and Pitts while trying are only a few flow forecasting studies done on Euphrates

to understand human brain and emulate its working Basin and its subbasins [29, 30]. So, effective data set on

processes mathematically. However, ANNs have gained snow melting was determined from available literatures

attraction after characteristic details of computational and they were integrated into ANNs based flow

processes were explained by [6]. Learning process of forecasting model. Moreover, ANNs based model results

ANNs were presented by [7, 8]. Idea behind improving were  compared with two lumped conceptual models

ANNs is simply developing a tool that can adapt itself which are using temperature index approach to calculate

changes in its environment for the purpose of solving snow  melt  process,  The  Hydrologic  Engineering

nonlinear problems [9]. ANNs provide advantages over Center- Hydrologic Modeling System (HEC-HMS) and

conventional hydrological models on successful Large Basin Runoff Model (LBRM). The main reason for

identification of nonlinear hydrologic relationship selecting these models was relevant data availability for

between  input output parameters, adaptation capability the study area.

to changing circumstances, improved model performance,

shorter calculation times with faster model development. Study Area and Data: Euphrates River originated from the

Due to several advantages of ANNs mentioned mountainous Eastern Anatolia in Turkey, is one of the

above, ANNs have been widely used in hydrological major rivers within Middle Eastern countries including

applications during last two decades. ANNs have been Turkey, Syria and Iraq. Snow is the main water source of

used for rainfall runoff modelling by [10-14,1] for Euphrates  Basin,  particularly  for  Upper Euphrates

streamflow forecasting by [15-17, 3]; for ground water Basin, which is also called Karasu Basin. High amount of

modelling by [18-21]; for water quality modelling by Karasu Basin annual flow consists of snow melt runoff.

[22,23]; for precipitation forecasting by [24-27]; and for Geographical location of Karasu Basin is longitudes from

sediment prediction by [28]. 38° 58’013’’E to 41°38’28’’ E and latitudes from 39°23’18’’

This paper presents implementation of ANNs method N  to  40°  24’26’’  N.  Basin  location  in  Turkey is

for forecasting catchment flows in a snow dominated shown in Figure 1. Karasu Basin has an area of 10215 km .2
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It is the most mountainous part of Euphrates Basin with

elevation range from 1125 m to 3487 m.

In Euphrates Basin, daily meteorological data

including rainfall, minimum-maximum & average air

temperatures, wind speed and humidity is available

between 1 January 1975 and 31 December 2008. Moreover,

station 2119, which is at the outlet of Karasu Basin

provides daily flow data for the study. Flow data is

available from 1 October 1975 to 30 September 1987 and

between 1 October 1994 and 31 December 2004. Flow data Fig. 2: Feed-forward network architecture [3]

is not available between 1 October 1987 and 30 September

1994 as the station 2119 was closed. Therefore, for the

current study, common data period for the meteorology

and flow data is from 1 October 1975 to 30 September 1987

and from1 October 1994 to 31 December 2004.

In Karasu Basin, minimum air temperature between

1975 and 2008 was -30°C while maximum temperature was

28.3°C. Observed average air temperature was 5°C. Fig. 3: Schematic diagram of single node [31]

Maximum  rainfall  measured between 1975 and 2008 is

59.6 mm observed on 23 February, 2004. Furthermore, A neural network is designed according to its architecture

wind speed values were between 0 and 13.7 m/s, while that consists of nodes, their connection weights and an

relative humidity was ranging from 7 to 99.3. Moreover, activation  function.  The nodes in neighbouring layers

Karasu  Basin  streamflows  varied  between   12.3  and are connected each other with links referred to synaptic

734 m /s. Maximum streamflow values were observed in weight that explains connection strength between nodes.3

spring seasons, when snow starts melting. Figure 2 schematically illustrates feed-forward neural

Data set was divided into training and test parts for networks.

the purpose of ANN model application. The test part is Mathematical aspect of ANNs can be defined on a

similar to validation process in conventional hydrological sample single neuron named j as follows. Figure 3 is

modelling. Data from 1 October 1975 to 30 September 1987 schematic illustration of node j. The inputs coming to

was selected as training data and from 1 October 1994 to node j comprise input vector X= (x ,...,x ,.....,x ) in ANN.

31 December 2004 was selected as test data. Similarly,  group  of  weights  coming to node j form

MATERIALS AND METHODS corresponds to a connection weight between i and j

Artificial Neural Networks: ANNs are relatively new all incoming signals and bias. Node j output, y  is acquired

nonlinear statistical approach which has the capability to by calculating the value of activation function, f, which

model complex nonlinear hydrological processes without determines the response of node to the effective incoming

physical expression. It is an alternative modelling signal receiving to node j in terms of input vector, weight

approach that is inspired by brain and nervous systems. vector and bias of node j [31]. Following equation explains

Fundamental theories of ANNs are the massive the mentioned process.

interconnections and parallel processing architecture of

biological neuron systems [16]. y  = f(X W -b ) (1)

ANNs can be defined as a network of interconnected

neurons, also referred to as nodes, units or cells. Non-linearity is provided by activation function in

Information processing is performed by nodes. Signals are ANNs. The mostly used activation functions in literature

transmitted between nodes by connection links. are linear, sigmoid and hyperbolic tangent functions [15].

Connection strength of each link is explained with Among these three, sigmoid function is the most

associated  weight.  For  the  purpose   of  determining commonly used [16]. Sigmoid function is a bounded,

each  node’s  output  signal,  an  activation  function monotonically  increasing  continuous  function as

which is  nonlinear   transformation  is  implemented  [31]. shown below.

1 i n

weight vector W=(W ,....,W ,...W ). Weight vector, W1j ij nj ij

nodes. The effective incoming signal to node j is sum of

j

j j j
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(2) RESULTS AND DISCUSSION

Training process is performed by adjusting weights selection is one of the most important issues for

that connects nodes in a neural network. Some part of successful ANN model application. Suitable data set

data set is split for training purpose. This is a similar means  sufficient  data  to  achieve meaningful ANN

process, which is called calibration in hydrological model results. As it is stated before, Upper Euphrates

models. Training is a repeating process that consists of Basin-Karasu Basin is a snow dominated area. Peak flows

number of epochs until the underlying function is learned during a year are seen at the end of spring and beginning

[32]. Primary aim of training is to minimize error function of summer seasons due to snow melt. Seasonal variation

by adjusting ANN network connection weights and of flows is shown in Figure 4 for a sample year, 1995.

threshold values or bias with a continuous stimulation A reasonable set of snow ground data is not

process. Error function is minimized by generating equal available in Turkey. Although some snow depth data are

or closer network outputs to targets. available for study basin, it is not sufficient for use in

The  Hydrologic  Engineering  Center-  Hydrologic runoffs using precipitation, air temperature, humidity,

Modeling   System:    The    Hydrologic   Engineering wind speed and temperature range data.

Center- Hydrologic Modeling System (HEC-HMS) was There are three most significant energy fluxes in the

originally developed to simulate the precipitation-runoff physics of snow melt; these are shortwave radiation,

processes   of    dendritic    watershed     systems.   Later, longwave radiation and turbulent fluxes including

it was improved to solve significant hydrological sensible and latent heat fluxes. [36] claimed that it is

problems including large river basin water supply, flood possible to explain physics of snow accumulation and

hydrology and  small  urban  or  natural  watershed  runoff melt with input data set involving precipitation, air

[33]. There are three main components of HEC-HMS: temperature, wind speed, humidity and temperature range.

basin component, meteorology component and control Utah Energy Balance Model [36] has been developed

specification component. based on this data set.

Large Basin Runoff Model: The Large Basin Runoff different  input  data  set  were generated and simulated.

Model (LBRM) was developed by the National Oceanic It is found that based on linear regression criteria

and Atmospheric Administration (NOAA)’s Great Lakes precipitation, air temperature, humidity, wind speed and

Environmental  Research  Laboratory (GLERL) in the temperature range is the best input data set to simulate

1980s to perform hydrologic simulations and water Karasu Basin runoffs.

resources  applications  in  the  Great   Lakes  Basin. It is important to standardize data to provide equal

LBRM  has  been  implemented  to basins draining into attention  during  the  training  process in successful

the Laurentian Great Lakes for the purpose of simulation ANN application. If data is not standardized, input

and forecasting runoffs [34, 35]. variables in different scales will dominate training to a

The LBRM is based on serial and parallel cascade of greater or lesser extent due to randomization of initial

linear reservoirs (outflows proportional to storage) to weights within a network to the same finite range. 

represent moisture storages within a watershed: surface,

upper soil zone (USZ), lower soil zone (LSZ) and

groundwater zone (GZ) [35]. Total available heat is

calculated by model each day, indexed by daily air

temperature, to become potential evapotranspiration

(ETP) or actual evapotranspiration (ET), a complementary

approach. Model divides available heat between potential

evapotranspiration and actual evapotranspiration

according to total available heat. Model takes ET as

proportional both ETP and storage. The model utilizes

variable-area infiltration (infiltration proportional to the

unsaturated fraction of USZ), daily precipitation and

degree-day snowmelt [35]. Fig. 4: Runoff graph in Karasu Basin in 1995

ANN Application in Karasu Basin: Suitable data

hydrological model. Thus, it is aimed to model snow

In addition, four different ANN models in terms of
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Table 1: Summary of different annual ANN runoff models

Input Set Output Linear Regression (R)

Model 1 Precipitation(mm)+Air Temperature (ºC) Flow (m /s) Training: 0.59 Test: 0.513

Model 2 Precipitation (mm)+Air Temperature (ºC) +Humidity (%) Flow (m /s) Training: 0.65 Test: 0.513

Model 3 Precipitation (mm)+Air Temperature (ºC)+ Humidity (%)+Wind Speed (m/s) Flow (m /s) Training: 0.67 Test: 0.523

Model 4 Precipitation (mm)+Air Temperature (ºC)+Humidity (%)+Wind Speed (m/s)+Temperature Range (ºC) Flow (m /s) Training: 0.78 Test: 0.523

Moreover, it is significant to standardize data for the input data sets. First model uses precipitation and air

efficiency of training algorithms (Dawson & Wilby, 2001).

Thus, all data set was standardized into [0-1] range by

using following equation.

(3)

In Equation 3, X refers to standardized data where

X  and X  are minimum and maximum values of anymin max

particular data.

Feed Forward Back Propagation (FFBP) algorithm is

obviously most popular training algorithm for ANN based

hydrological studies. Thus, FFBP was selected as a

training algorithm for the current study. Due to

widespread usage of Multilayer Perceptron (MLP) ANN

network type in hydrology studies, it is decided to use

MLP as ANN network type in this study.

Furthermore, it is very significant to consider

seasonality in Karasu Basin to achieve a better

application of ANN based runoff model. Major portion of

runoffs  consist  of  snow melt and peak flows are seen

late spring and early summer periods. Thus, it is also

necessary to perform seasonal analysis using only spring

and  summer  periods. So, ANN model in Karasu Basin

was developed and run for both annual (whole year) and

seasonal (Spring -Summer) periods.

Annual ANN Model: Four different models (Model 1,

Model 2, Model 3, Model 4) were generated to simulate

daily Karasu Basin runoffs for whole year using different

temperature to model runoffs while the last one uses

precipitation, air temperature, humidity, wind speed and

temperature range to simulate runoffs. Model 4 showed

the best performance with a linear regression coefficient

(R)  of 0.78  for  training  phase and 0.52 for test phase.

The first model showed worst performance with a linear

regression  coefficient  of  0.59  for  training phase and

0.51 for test phase. Summary of different ANN model

outcomes are presented in Table 1.

Number of hidden layers was decided as 5 and

number of neurons in each hidden layer was selected as

10 based on trial-error procedure in ANN models. Flow

scatter diagrams of best ANN model (Model 4) are shown

in Figure 5.

Moreover, comparison of observed and modelled

flow time series graphs at the outlet of Karasu Basin for

training and test phases are shown in Figure 6.

Model performance was evaluated in terms of one of

the most popular assessment criteria in hydrological

studies named Nash Sutcliffe coefficient of determination

(R ) as defined in Equation 4.2

(4)

In eguation 4, Q  corresponds to observed flowobs

where   Q     corresponds    to   modelled  flow.mod

Moreover,       refers to mean observed flow. R  for2

training and test phases was found 0.71 and 0.50

respectively. Model performance is not very good

because  of impacts of large variations in seasonal flows.

Fig. 5: Flow scatter diagrams of training and test phases in annual analysis
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Fig. 6a-b: a: Observed-Modelled flow graph at Karasu Basin outlet point for training phase

b: Observed-Modelled flow graph at Karasu Basin outlet point for test phase

Table2: Different seasonal ANN runoff models

Input Set Output Linear Regression (R)

Model 1 Precipitation (mm)+Air Temperature (ºC) Flow (m /s) Training: 0.74 Test: 0.653

Model 2 Precipitation (mm)+Air Temperature (ºC) +Humidity (%) Flow (m /s) Training: 0.78 Test: 0.683

Model 3 Precipitation (mm)+Air Temperature (ºC)+Humidity (%)+Wind Speed (m/s) Flow (m /s) Training: 0.78 Test: 0.683

Model 4 Precipitation (mm)+Air Temperature (ºC)+Humidity (%)+Wind Speed (m/s)+Temperature Range (ºC) Flow (m /s) Training: 0.88 Test: 0.713

Other than snowmelt season, flow consists of baseflow set to simulate flows in Karasu Basin. Worst performance

and limited amount of rainfall. With the start of snowmelt, was  observed  for Model 1, however still it is not very

flow increases significantly. Large variations between low bad  and  may  be  acceptable to simulate runoffs in

flows and peak flows is the cause of ANNs incapability to Karasu Basin.

simulate to such a large variations. Analogous to annual model, feed forward back

Seasonal  ANN  Model: Daily meteorological data model application. Different numbers of neurons and

between 1976 and 2004 was used to develop seasonal hidden layers were experienced in this case. As a result,

ANN models. Unlike annual model, meteorological and 5 hidden layers with 10 neurons each provided the best

flow data between March and August months were used results and used in seasonal ANN models. Flow scatter

for  the  purpose of developing seasonal models. Similar diagrams of training and test phases for Model 4 are

to annual model, four models according to different input shown in Figure 7.

set were generated and comparisons between observed Model performance is also evaluated in regards to

and modelled flows were assessed through linear Nash-Sutcliffe coefficient of determination (R ). R  is

regression. Model details and performances based on calculated as 0.81 for training phase and 0.70 for test

linear regression are shown in Table 2. phase for Model 4. Comparison of modelled and observed

As it can be seen in Table 2, best model performance flow time series graphs at the outlet of Karasu Basin are

was obtained for Model 4 with a linear regression shown in Figure 8 for training and test phases.

coefficient of 0.88 for training phase and 0.71 for test It is to be noted that Figures 8 (a) and (b) are the

phase. It means precipitation, air temperature, humidity, comparisons  of  observed  flow  and  modelled  for

wind speed and temperature range is the best input data March-August periods only.

propagation learning algorithm was used for seasonal

2 2



800

700

600

500

400

300

200

100

0

Modeled Flow (m3/s)

Observed Flow (m3/s)

4  International Conference on Water Resources and Arid Environments (ICWRAE 4): 222-232th

228

Fig. 7: Seasonal flow scatter diagrams of training and test phases in seasonal analysis

Fig. 8a-b: a: Seasonal observed-modelled flow graphs for training phase

b: Seasonal observed-modelled flow graphs for test phase

Fig. 9: HEC-HMS comparison hydrograph for calibration run at outlet point of Karasu Basin
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Table3: Calibration run performance in HEC-HMS

1997-2002 Calibration Run

Nash-Sutcliffe Coefficient of Determination 0.70

Linear Regression 0.70

Table 4: Validation run performance in HEC-HMS

2003-2004 Validation Run

Nash-Sutcliffe Coefficient of Determination 0.76

Linear Regression 0.77

Fig. 10: HEC-HMS comparison hydrograph for validation run at outlet point of Karasu Basin

Fig. 11: LBRM comparison hydrograph for calibration run at outlet point of Karasu Basin

HEC-HMS Application in Karasu Basin: HEC-HMS validation   run   is   demonstrated   in   Figure   10.

model  was  applied to Karasu Basin in lumped structure Validation run results according to Nash-Sutcliffe

at  daily  time step. For study area, model was run between coefficient of determination and linear regression

1997 and 2004. Calibration was performed from 1 January, coefficient are shown in Table 4.

1997 to 31 December, 2002. By using calibration trial, it is According to performance assessment results, it is

possible to calibrate basin component parameters possible to state that HEC-HMS model has an adequate

including loss, transform, baseflow and routing methods. accuracy to simulate runoffs in Karasu Basin.

However, there is no option to calibrate meteorological

component parameters in HEC-HMS. Comparison LBRM Application in Karasu Basin: The LBRM was

hydrograph of modeled and observed outflow at basin applied to Karasu Basin at daily time step and calibration

outlet after calibration run is shown in Figure 9. run was performed from 1 January, 1997 to 31 December,

Calibration period model performance was evaluated 2002 similar to HEC-HMS application. Comparison

in terms of Nash-Sutcliffe coefficient of determination (R ) hydrograph of outlet outflow is shown in Figure 11.2

and linear regression coefficient. Performance evaluation Calibration run model performance was evaluated

results are shown in Table 3. according to Nash-Sutcliffe coefficient of determination

Validation   process     was     accomplished and linear regression. Moreover, validation was performed

between 1   January,   2003   and   31   December,   2004. between 1 January, 2003 and 31 December, 2004. Results

Basin  outlet point  flow  comparison  hydrograph  for are shown in Table 5 (a) and (b).
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Table 5: (a) Calibration run performance in LBRM (b) Validation run performance in LBRM

                        (a) 1997-2002 Calibration Run

Nash-Sutcliffe Coefficient of Determination 0.73

Linear Regression 0.75

(b) 2003-2004 Validation Run

Nash-Sutcliffe Coefficient of Determination 0.72

Linear Regression 0.75

Fig. 12: LBRM comparison hydrograph for validation run at outlet point of Karasu Basin

Furthermore, flow hydrograph at basin outlet is Different combinations of input data sets among

shown in Figure 12. precipitation,  air  temperature, temperature range,

In terms of Nash Sutcliffe coefficient of determination humidity and wind speed data were used to explore best

and linear regression, it can be concluded that LBRM has input data set. Four different ANN models were

an adequate ability to simulate runoffs in Karasu Basin. developed based on different input data set for both

CONCLUSIONS annual and seasonal analyses, Model 4 showed the best

It was aimed to simulate streamflows of Upper Model 4, input data set consists of precipitation, air

Euphrates Basin using current popular method in temperature, humidity, wind speed and temperature range.

hydrology named Artificial Neural Networks. Artificial However, due to the drawback of ANN to find global

Neural Networks was selected owing to its capability to optima in complex parameter spaces, performances of

model non-linear hydrological processes successfully. models are not too high but good enough. Because of

Moreover, use of ANN does not require high expertise on ANN’s incapability to simulate large variations, both low

in-depth hydrological processes. Finally, ANN has flows and peak flows were not matched to expected

relatively low computational demands and it is possible to accuracy. To overcome this issue, a seasonal analysis and

integrate it with other mathematical tools easily. modelling was performed with only peak-flow season

Most of the previous studies with ANN hydrological (spring-summer) data.

simulations dealt with rainfall contributed runoff It is found that the ANN model is sensitive to season

simulations only. It is more difficult to simulate runoff simulations. Seasonal runoff simulations involving data

process in snow dominated basin in compared to runoff between March and August were run in addition to

process in rainfall dominated basin. Because, for snow annual (whole year) simulations. It is found that model

dominated basin both runoffs from rainfall and snow melt performances increased significantly for seasonal

need to be considered. Moreover, physical processes of simulation compared to annual simulations. For Model 4,

snow accumulating and melting are highly complex, linear  regression coefficient increased from 0.78 to 0.88

including mass and energy balances as well as heat and for training phase and increased from 0.52 to 0.71 for test

mass transport by conduction, vapour diffusion and phase. Also, Nash-Sutcliffe coefficient of determination

meltwater drainage (Tarbaton & Luce, 1996). was increased significantly. For training phase it

To find most suitable results, it is important to select increased from 0.71 to 0.81 and for test phase increased

correct input data set to simulate snow melt successfully. from 0.50 to 0.70.

annual and seasonal analyses. It is found that for both

performance to simulate runoffs in Karasu Basin. For
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Although ANN model is evaluated based on Nash- 2. Karunanithi,  N.,  W.J.  Grenney,  D.   Whitley  and K.

Sutcliffe coefficient of determination and linear regression,

comparing ANN model results with HEC-HMS and LBRM

results is useful to determine the performance of ANN

model. HEC-HMS and LBRM results are more successful

than annual ANN models in both calibration (training) and

validation (test) periods. However, seasonal ANN model

with  best  performance  (Model  4) is more successful

than HEC-HMS and LBRM in calibration period, while

HEC-HMS and LBRM results are slightly more achievable

than best ANN model (Model 4) in validation phase.

On the other hand, calibration and validation periods

of  ANN  models  are  larger than HEC-HMS and LBRM.

If this period is reduced, ANN model performance will

probably show a slight decrease. For instance, R  would2

be 0.66 (currently 0.70) in Model 4, if validation period is

shorten from current time slice (1994-2004) to same period

with HEC-HMS and LBRM (2003-2004).

In summarize, seasonal ANN model with input data

including precipitation, air temperature, humidity, wind

speed and temperature showed adequate performance to

simulate snow runoffs. Advantages of ANN models over

conventional hydrological models were discussed before.

Results of study demonstrated that most important

advantage of ANN model over HEC-HMS and LBRM in

snow dominated basin was shorter calculation times with

faster model development. Moreover, ANN is a black box

model based on relation between input and output data.

So, it does not require large experience on hydrology for

model application. On the other hand, input data

requirement of ANN model to simulate snow melt runoffs

is larger than HEC-HMS and LBRM. However, it is still

using basic meteorological data.

Finally, ANN model performance to simulate snow

runoffs is good enough especially when considering

spring - summer periods, which are in fact most important

seasons in terms of runoff volumes. As a further step, it

is recommended to use snow data such as snow depth or

snow water equivalent as input data with other compatible

inputs. It will most likely increase model performance in

estimating snow runoffs from snow dominating basins.
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