Application of the HEC-HMS Model for Runoff Simulation in a Mediterranean Catchment

Imène Skhakhfa, Lahbaci Ouerdachi and Jean-François Deliege

Laboratory of Hydraulics and Hydraulic Constructions, Badji Mokhtar-Annaba University
Aquapole Liège, Belgique

Abstract: This study presents a flood estimation model for Wadi Rassoul in El Berda watershed, north East of Algeria. To ensure the overall consistency of simulated results, it is necessary to develop a validation process, particularly in regions where data are scarce or limited and unreliable. To this we must calibrate and validate the model over the hydrograph as measured at the output. Calibration and validation processes were carried out using different sets of data (CN, SCS Lag and Muskingum K). Evaluation on the performance of the developed flood model derived using HEC-HMS (hydrologic modelling system) yield a correlation coefficient R^2 close to 1 and The Nash-Sutcliffe efficiency. We limit ourselves to modelling flood of short duration for which the process of evapotranspiration is negligible. Several events have been tested, including two to calibrate and one to validate the model. So it can be said that using the HEC-HMS model had the highest efficiency in with the values of these parameters calibrated, based on objective functions (percent error in peaks), with 8.8 percent difference between of observed and simulated discharges with R^2 value is 0, 87 and The Nash-Sutcliffe efficiency value is 0, 99.

Key words: HEC-HMS · Calibration · Validation · Flood Modelling · Annaba

INTRODUCTION

The term watershed applies to a naturally occurring hydrologic unit that contributes storm runoff to a single waterway classified on the basis of its geographical area [1]. Shortage of water in most of the water scare region is not only caused by low or unpredictable rainfall pattern but also due to the lack of capacity to conserve and manage the available rainwater in a sustainable manner (Ibrahim-Bathis and Ahmed). Some of the water scare arid and semi-arid watersheds in Algeria where rainfall patterns are unpredictable, subject to undergo various hydrological constraints. Surface runoff estimation based on rainfall is one of the prerequisites for planning and execution of water resource projects [2, 3, 4]. The ability of rainwater harvesting is of vital importance to sustain agriculture and other economic activities in drought-prone areas of arid and semi-arid regions [5].

The advantage of using the Geographic Information System (GIS) in hydrological management has been clearly stated by many researchers [6, 7, 8]. Efforts have also been made to integrate some hydrological models with the GIS environment. Most of these models are physically-based distributed models, e.g. HECHMS, SWAT, TOPMODEL and WEPP. This integration allows assessment and prediction of the impact of watershed management practices [9, 10, 11, 12]. The present research tries to study the efficiency of HEC-HMS model in Wadi Rassoul.

MATERIALS AND METHODS

Study Area: Wadi Rassoul watershed is located at Annaba in northeast part of Algeria. The total area of Wadi Rassoul drainage network is around 105, 85km2, the altitude area varies from 55 and 925mwhich lying between 7°27'40, 81" to 7°36'56, 24" E longitude and 36°32'55, 13" to 36°41'19, 4" N latitude from the study area for the present work.

For this study, rainfall and runoff of three events (9/23/2009 to 9/25/2009, 11/2/2010 to 11/4/2010 and 3/15/2011 to 3/16/2011) at Ain El Berda stream flow gauging and rainfall station was taken as the outlet of the watershed which is located at 7°36'19"E longitude and
The study area is Mediterranean type where the annual precipitations is 660mm and the mean annual of relative humidity is about 75% while the minimum and maximum seasonal temperatures are 7° and 45° respectively.

Description of the Hydrologic Model: HEC-HMS is a physically based, semi-distributed hydrologic model developed by the US Army Corps of Engineers to simulate the hydrologic response of a watershed subject to a given hydro-meteorological input [13]. The model uses underlying DEM information to partition the basin into sub-watersheds. The size of the sub-watershed is determined a priori by the modeller and few or no guidelines are available for sub-watershed selection.

The size of the sub-watershed is determined a priori by the modeller and few or no guidelines are available for sub-watershed selection.
In most cases, the balance between the resolution of the distributed information and the computation time required for simulation is the main factor considered for this selection.

The model can simulate individual storm events as well as continuous precipitation input at minute, hourly, or daily time steps [14].

Parameters in HEC-HMS: The HEC-HMS offers a variety of model options to simulate runoff production, at the hillslope scale and flow channels. These include SCS curve number, SCS unit hydrograph and baseflow estimation methods which are necessary to calculate water losses, runoff transformation and baseflow rates. In our study, the Muskingum and constant loss method are used to calculate flood routing and water losses along the channel. The values of the model parameters have the potential to change along with changing sub-basin sizes. We provide a description of the governing equations and the physical meaning of model parameters for hillslope and channel processes here and will subsequently use them to analyze their behaviour as the size of the sub-watersheds changes.

Hydrologic mechanisms on hillslope include losses due to pending, infiltration and baseflow production. The SCS loss model for basin loss is given by:

$$P_e = \frac{(P - I)^2}{(P - I) + S}$$ \hspace{1cm} (1)

where \(P_e\) is excess precipitation, \(P\) is accumulated precipitation, \(I\) is initial abstraction and can be initialized as 0.25 and \(S\) is the potential maximum retention and is a function of curve number (CN): \(S = (25400 - 254CN)/CN\) (SI system) [15]. The initial abstraction and CN are required parameters.

The SCS unit hydrograph (UH) rainfall–runoff transformation model is a dimensionless unit hydrograph \(U\), expressed as a ratio to peak (RP) discharge \(U_p\) for any fraction of time \(t/T_p\), where \(T_p\) is the time to peak. The peak discharge is given by \(U_p = CA/T_p\), where \(C\) is the conversion constant (2.08 in SI) and \(A\) is the sub-watershed area. The time of peak \(T_p\) is calculated as

$$T_p = \frac{\Delta t}{2} + t_0$$

where \(\Delta t\) is the time step in HEC-HMS and \(t_0\) is the time lag defined as the time difference between the center of excess precipitation and the center of UH [15]. \(t_0\) is a required input parameter.

The exponential recession model for baseflow is given by;

$$Q_e = Q_0e^{-kt}$$ \hspace{1cm} (2)

where \(Q_e\) is initial baseflow and \(k\) is an exponential decay constant. During the recession period of a flood event, a RP is specified to derive the threshold flow at which the baseflow is calculated as a fraction of peak flow. \(Q_0, k\) and the RP are required parameters.

Hydrologic mechanisms in the transport in the channel contain Muskingum parameters and constant channel loss. The Muskingum method for channel routing is chosen. In this method \(x\) and \(K\) parameters must be evaluated. Theoretically, \(K\) parameter is time of passing of a wave in reach length and \(x\) parameter is constant coefficient. Therefore parameters can be estimated with the help of observed inflow and outflow hydrographs. Parameter \(K\) estimated as the interval between similar points on the inflow and outflow hydrographs. Once \(K\) is estimated, \(x\) can be estimated by trial and error [15].

The Muskingum model is frequently used for flood routing in natural channels [16]. The continuity and storage equation in mathematical terms is expressed as;

$$\frac{dW}{dt} = I - Q; W = [xI + (1 - x)Q]$$ \hspace{1cm} (3)

where \(W\) is channel storage; \(I\) and \(Q\) are inflow and outflow rates, respectively; \(K\) is storage time for a channel and is estimated as \(K = L/V\), where \(L\) is channel length and \(V\) is flow wave velocity; and \(x\) is a weighting factor varying from 0 to 0.5 that can be estimated as

$$1 \left[1 - \left(\frac{Q_0}{BS_0V_mL} \right) \right]$$

of flow area and \(S_0\) is the friction slope [17]. \(K\) and \(x\) are required parameters. Water loss through channels is approximated by a constant channel loss method. The two critical parameters in this model are the constant flow rate subtracted and the ratio that is remaining.

Model Calibration and Assessment: The initial step in model calibration is a manual adjustment of model parameters using the trial-and-error method, which enables the modeller to make a subjective adjustment of parameters that gives an appropriate fit between observed and simulated hydrographs [14].

Model Evaluation Statistics (Standard Regression): Pearson’s correlation coefficient (r) and coefficient of determination (R2): Pearson’s correlation coefficient (r) and coefficient of determination (R2) describe the degree of collinearity between simulated and measured data [18]. The correlation coefficient, which ranges from -1 to 1, is an index of the degree of linear relationship between observed and simulated data. If \(r = 0\), no linear
relationship exists. If \(r = 1 \) or \(-1\), a perfect positive or negative linear relationship exists. Similarly, \(R^2 \) describes the proportion of the variance in measured data explained by the model. \(R^2 \) ranges from 0 to 1, with higher values indicating less error variance and typically values greater than 0.5 are considered acceptable \([19, 20]\). Although \(r \) and \(R^2 \) have been widely used for model evaluation, these statistics are over sensitive to high extreme values (outliers) and insensitive to additive and proportional differences between model predictions and measured data \([21]\).

The value of \(R^2 \) is calculated using the following equation:

\[
R^2 = \frac{\sum_{i=1}^{n} (Q_o - \overline{Q_o})(Q_s - \overline{Q_s})^2}{\sqrt{\sum_{i=1}^{n} (Q_o - \overline{Q_o})^2} \sqrt{\sum_{i=1}^{n} (Q_s - \overline{Q_s})^2}}
\]

(4)

where, \(Q_o \) = observed discharge, \(Q_s \) = simulated discharge, \(n \) = total number of observed data.

Model Evaluation Statistics (Dimensionless): The calibrated model performance was evaluated using the Nash–Sutcliffe model efficiency (NS) \([22, 23]\). The NS is used to assess the agreement between observations and simulations. Mathematically, it is expressed as;

\[
NS = 1 - \frac{\sum_{i=1}^{n} (Q_o - Q_s)^2}{\sum_{i=1}^{n} (Q_o - \overline{Q_o})^2}
\]

(5)

where \(Q_o \) is observed discharge, \(\overline{Q_o} \) is average observed discharge and \(Q_s \) is simulated discharge; all \(Q \) variables have the unit runoff volume per time step (e.g. m\(^3\) s\(^{-1}\)). Nash–Sutcliffe efficiencies can range from –\(\infty \) to 1. An efficiency of 1 (NS=1) corresponds to a perfect match between the modelled and observed time series, whereas an efficiency of 0 (NS=0) indicates that the model predictions are as accurate as the mean of the observed data. If the efficiency is less than 0 (NS<0), the observed mean is a better predictor than the model. More detailed information on NS can be found in Legates \([21]\), McCuen et al. \([24]\), Schaeffli and Gupta \([25]\) and Kashid et al. \([26]\).

Fig. 2: Delineate watershed, sub-watershed and generate the stream network from DEM
Data Acquisition: The data used in this study were: map Ain Berda N°33 and map Guelma N°54 on 1/50,000 scale and Digital Elevation Model (DEM) was acquired from the CGIAR Consortium for Spatial Information (http://strm.csi.cgiar.org). All data are geo-rectified and projected to Geographic Coordinate System World Geographic System 1984 (GCS WGS) Universal Transverse Mercator (UTM) zone32 North (Fig. 2) for delineate watershed, sub-watershed and generate the stream network (Fig. 3) with Geospatial Hydrologic Modelling Extension (Hec-GeoHms) along with ArcHydroextention in Arcgis 9.3 utilised to create the input file for use HecHms.

Basin Model: In the present study, the basin model was created using the HEC-GeoHMS and then imported into the HEC-HMS with all its hydrologic elements: 23 sub-catchments, 12 junctions, 12 reaches and a sink used to represent the outlet of a basin (node with inflow and without outflow) (Fig. 3).

RESULTS AND DISCUSSION

Model Calibration and Validation: The successful application of the hydrologic watershed model depends upon how well the model is calibrated which in turn depends on the technical capability of the hydrological model as well as the quality of the input data. HEC-HMS watershed model is calibrated for the event based simulation. The objective of the model calibration is to match observed simulated runoff volumes, runoff peaks and timing of hydrographs with the observed ones.

In the present study, a combination of manual and automated calibration techniques was used. Automated calibration, known as “trial optimization” in HEC-HMS, was used to obtain optimum parameter values that give the best fit between observed and simulated flow volume values [27].

The hydrological model results showed a reasonable fit between simulated and observation hydrograph shape. Figures (4 and 5) a time-series comparison of simulate and observed streams flow for the outlet of watershed for the calibration periods 9/23/2009 to 9/25/2009 and 3/15/2011 to 3/16/2011 (we limit ourselves to modeling flood of short duration for which the process of evapotranspiration is negligible). The peak values of measured flow match well with the peak values of the simulated flow, although the model tended to overestimate runoff as observed though stream measurements.

After calibration of the model, we notice a greatly decreasing of peak discharge compared before calibration. Calibrated values of the HEC-HMS parameters for the calibration period are presented in Table 1 and 2.

The calibrate model was then used to estimate a stream flow Oued Rassoul watershed using precipitation period 11/02/2010 to 11/04/2010. The observed and simulated hydrographs before and after validation have been shown in Figures (6 and 7).
Fig. 4: Observed and simulated streamflow hydrographs for the calibration (9/23/2009–9/25/2009) period

Fig. 5: Observed and simulated streamflow hydrographs for the calibration (3/15/2011- 3/16/2011) period

Fig. 6: Observed and simulated streamflow hydrographs before the validation (11/2/2010-11/4/2010) period
Fig. 7: Observed and simulated stream flow hydrographs after the validation (11/2/2010-11/4/2010) period

Table 1: Calibrated values of the model parameters (SCS Lag and CN)

<table>
<thead>
<tr>
<th>Sub-areas ID</th>
<th>SCS Lag (min)</th>
<th>CN</th>
<th>Original</th>
<th>Calibrated</th>
</tr>
</thead>
<tbody>
<tr>
<td>W270</td>
<td>176, 8</td>
<td>193, 7</td>
<td>80, 5</td>
<td>99</td>
</tr>
<tr>
<td>W280</td>
<td>114, 1</td>
<td>114, 1</td>
<td>77, 7</td>
<td>77, 7</td>
</tr>
<tr>
<td>W290</td>
<td>49, 7</td>
<td>62, 2</td>
<td>83, 7</td>
<td>99</td>
</tr>
<tr>
<td>W300</td>
<td>158, 9</td>
<td>169, 1</td>
<td>84, 5</td>
<td>81, 6</td>
</tr>
<tr>
<td>W310</td>
<td>98, 2</td>
<td>98, 2</td>
<td>81, 2</td>
<td>81, 2</td>
</tr>
<tr>
<td>W320</td>
<td>66, 4</td>
<td>66, 4</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>W330</td>
<td>90, 1</td>
<td>90, 1</td>
<td>84</td>
<td>84</td>
</tr>
<tr>
<td>W340</td>
<td>112, 3</td>
<td>112, 3</td>
<td>79, 5</td>
<td>79, 5</td>
</tr>
<tr>
<td>W350</td>
<td>92, 5</td>
<td>92, 5</td>
<td>81, 2</td>
<td>81, 2</td>
</tr>
<tr>
<td>W360</td>
<td>53, 3</td>
<td>53, 3</td>
<td>85, 2</td>
<td>85, 2</td>
</tr>
<tr>
<td>W370</td>
<td>95, 6</td>
<td>95, 6</td>
<td>89, 9</td>
<td>89, 9</td>
</tr>
<tr>
<td>W380</td>
<td>117, 3</td>
<td>98, 8</td>
<td>83, 1</td>
<td>99</td>
</tr>
<tr>
<td>W390</td>
<td>87, 6</td>
<td>87, 6</td>
<td>83, 9</td>
<td>83, 9</td>
</tr>
<tr>
<td>W400</td>
<td>104, 7</td>
<td>84, 2</td>
<td>84</td>
<td>77, 5</td>
</tr>
<tr>
<td>W410</td>
<td>55, 8</td>
<td>55, 1</td>
<td>82, 1</td>
<td>75, 7</td>
</tr>
<tr>
<td>W430</td>
<td>87, 9</td>
<td>70, 8</td>
<td>83, 2</td>
<td>76, 8</td>
</tr>
<tr>
<td>W450</td>
<td>134, 3</td>
<td>109, 3</td>
<td>85, 2</td>
<td>59, 3</td>
</tr>
<tr>
<td>W460</td>
<td>104, 1</td>
<td>86, 02</td>
<td>83</td>
<td>72, 1</td>
</tr>
<tr>
<td>W470</td>
<td>95, 5</td>
<td>61, 6</td>
<td>85</td>
<td>69, 4</td>
</tr>
<tr>
<td>W480</td>
<td>115, 0</td>
<td>95, 1</td>
<td>73</td>
<td>67, 3</td>
</tr>
<tr>
<td>W490</td>
<td>76, 4</td>
<td>62, 9</td>
<td>78</td>
<td>71, 9</td>
</tr>
<tr>
<td>W500</td>
<td>58, 1</td>
<td>57, 4</td>
<td>86</td>
<td>79, 3</td>
</tr>
<tr>
<td>W510</td>
<td>60, 6</td>
<td>60, 4</td>
<td>86</td>
<td>79, 3</td>
</tr>
</tbody>
</table>

Table 2: Calibrated values of the model parameters (Muskingum K)

<table>
<thead>
<tr>
<th>Channel ID</th>
<th>Muskingum K (h)</th>
<th>Original values</th>
<th>Calibrated values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reach-1</td>
<td>2, 39</td>
<td>2, 45</td>
<td></td>
</tr>
<tr>
<td>Reach-10</td>
<td>0, 33</td>
<td>0, 50</td>
<td></td>
</tr>
<tr>
<td>Reach-11</td>
<td>1, 65</td>
<td>12, 59</td>
<td></td>
</tr>
<tr>
<td>Reach-12</td>
<td>0, 19</td>
<td>0, 04</td>
<td></td>
</tr>
<tr>
<td>Reach-2</td>
<td>0, 67</td>
<td>0, 68</td>
<td></td>
</tr>
<tr>
<td>Reach-3</td>
<td>1, 9</td>
<td>1, 94</td>
<td></td>
</tr>
<tr>
<td>Reach-4</td>
<td>1, 02</td>
<td>1, 04</td>
<td></td>
</tr>
<tr>
<td>Reach-5</td>
<td>2, 44</td>
<td>0, 48</td>
<td></td>
</tr>
<tr>
<td>Reach-6</td>
<td>0, 22</td>
<td>0, 06</td>
<td></td>
</tr>
<tr>
<td>Reach-7</td>
<td>1, 85</td>
<td>1, 89</td>
<td></td>
</tr>
<tr>
<td>Reach-8</td>
<td>0, 13</td>
<td>0, 20</td>
<td></td>
</tr>
<tr>
<td>Reach-9</td>
<td>0, 5</td>
<td>0, 76</td>
<td></td>
</tr>
</tbody>
</table>

Model Evaluation: Model performance is assessed using two performance indicators, namely the NS and R^2, who have the values 0, 867 and 0, 99 respectively.

The correlation coefficient indicates the accuracy of a model. The value of one indicates perfect prediction [28]. Graph of simulated versus observed flows before and after the validation (11/2/2010-11/4/2010) period are shown in Figures (8 and 9).

Fig. 8: Graph of simulated versus observed flows before the validation (11/2/2010-11/4/2010), $R^2 = 0.386$
CONCLUSION

Runoff estimation is mandatory to sustain the water resources but in this region the monitored data are limited. The present research tries to study the efficiency of HEC-HMS model in Wadi Rassoul. A sensitivity analysis was carried out by adjusting different parameter values in both the HEC-HMS for watershed. After running the models repeatedly, the simulated stream flow results were compared with monitored values in outlet of basin (where the discharge station is located) at each change of parameters. In this regard, the Curve Number, SCS Lag and Muskingum K parameters are calibrated for two events of raining and flooding, one event for validate model. The results of the measuring approved the results of the model and showed that the difference between the peak discharge observed and validated model was about 8.86 percent with R2 value is 0.867 and Nash-Sutcliffe efficiency is at 0.99. The present study concludes that the model can be utilised for the Wadi Rassoul watershed. Moreover, it may help to simulate runoff in un-gauged watershed where there is no gauging station to measure runoff.

REFERENCES

1. AIS and LUS, 1990. Watershed atlas of India, Department of Agriculture and Cooperation. All India soil and land Use survey. IARI Campus, New Delhi.

