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Abstract: In this paper an attempt has been made to simulate hydrologic processes by calibrating SWAT model

with  MODIS  evapotranspiration  data  for  Sirsa  River  Basin,  an  unguaged  basin,  in  Western  Himalayas.

The study used remote sensing data derived evapotranspiration to parameterize SWAT model through manual

calibration. For this study twelve subasins using fifth order stream as threshold were delineated from Aster

DEM. These were further subdivided into 179 HRUs by overlaying land use/landcover, soil and slope layers.

Climate input parameters were loaded to run the model for the period of 2001-2008, considering first three years

as warm-up period. After initial SWAT run, sensitivity analysis was performed based on Latin LH-OAT method.

From sensitivity analysis groundwater related parameters (GWQMN, REVAPMN, GW_REVAP and RCHR_DP),

soil related parameters (SOL_Z, SOL_AWC and SOL_K) and HRU related parameters (EPCO, ESCO and

CANMX) were found to be most sensitive. In the basin, 50% and 42% of mean annual precipitation is

contributed as ET and streamflow, respectively; and 8% as deep aquifer recharge. About 64%, 11% and 23%

of streamflow is contributed from SURQ, LATQ and GWQ, 90% of annual streamflow is generated during

monsoon period (July – September). Contribution of baseflow to streamflow is maximum in post-monsoon

period (October - December).
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INTRODUCTION Hydrologic models, especially rainfall-runoff models

Quantitative  information  of hydrological investigation’ [3]. Based on the hydrological process

components not only helps to understand governing description, hydrological models can be either lumped

processes,  but is also essential to manage water (conceptual), fully distributed or semi-distributed. Since

resources under changing environmental conditions. last two decades, integrating with geospatial tools and

Among all  hydrological  components,  runoff is remotely sensed data, ample distributed and semi-

commonly   measured   at   several   points   on  main distributed models have been developed to estimate water

stream. Though, data is readily available in developed quality and quantity [4]. Among  various  models,  Soil

countries, but is poorly maintained in developing and Water Assessment Tool (SWAT) model has been

countries. Hence, for sustainable water resources popularly applied worldwide for various range of

management, quantification  of  rainfall-runoff  relation watersheds varying topography, climate, soil and

and other hydrological components areessential, but a management conditions over long periods of time [5,6,7].

challenging task. To overcome this challenge hydrological SWAT model [8] is a physically based semi-distributed,

modelling has emerged as a potent tool. Several basin-scale and continuous-time model. It is suitably used

hydrological and environmental models have been for estimating water balance components [4,9], sediment

developed recently to quantify hydrological components and nutrition loss [10,11], impact of nonpoint-source

and probe  the  hydrologic  response to human activity pollution and water management [12], land use change

[1,2]. [13,14,15]  and climate change [16,17,18] on water quality

are ‘simplifications of the real-world system under
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and quantity. In this study SWAT model is opted as it for estimation of runoff in ungauged basin

offers: (a) detail surface and sub-surface hydrologic [23,32,33,34,35,36]. In this approach, hydrologic

processes, (b) spatial heterogeneity in the model input- information, i.e., model parameters or model structure are

output, (c) long-term hydrologic simulation with limited transferred from gauged (donor) to ungauged (target)

data, even for ungauged basin also, (d) simple and user- catchment based on similarity in catchment characteristics

friendly platform, good documentation and solution or spatial proximity [35,37]. But, this approach is not

feedback from large number of user community etc. applicable for an ungauged basin, if a donor basin is not

Physically-based models, like SWAT, incorporate available. Moreover, uncertainty in simulation may arise

huge number of parameters, of which most are not either due to equifinality problems from optimisation with

physically measurable. It is obtained through a process of limited number of gauge points [38], or parameter transfer

adjustment with field data (observed), known as through regionalization approach [39]. Hence,

calibration. But, adjustment of such huge parameters is hydrological parametersmeasured using satellite data

cumbersome and labour-intensive [19]. Hence, could provide a viable solution to calibrate hydrological

identification of key parameters and the parameter model for data scarce region [19]. 

precision is required for calibration [20, 21]. Sensitivity Application of remote sensing data derived

analysis helps  to  identify  most  influential hydrological components like, evapotranspiration and soil

parametersthat  have significant influence on model moisture for parameterization of hydrological models in

output [22]. A combined method of Latin Hypercube (LH) ungauged basin is recently getting momentum in

sampling and One-Factor-At-a-Time (OAT) is popularly hydrological engineering [19,40,41,42,43,44]. Most of

used for sensitivity analysis in which each model these studies, used Moderate Resolution Imaging

parameter is changed at predefined interval, while others Spectroradiometer (MODIS) product of land cover and

are kept constant at their nominal value [23,24,25,26]. This vegetation cover (NDVI, LAI) to estimate

LH-OAT approach embedded in SWAT interface is used evapotranspiration (ET) based on the Surface Energy

in this study. However, understanding of variation in Balance Algorithm (SEBAL) for calibration of SWAT

model output with change in sensitive parameter value is model   or other   hydrological   model   [19,41,42,44].

utmost important for manual calibration. Few studies Stehr et al., [43] combined MODIS snow products with

experimented model accuracy by manually varying SWAT SWAT model to estimate monthly flows in a basin located

parameters. For example, Wu and Johnston, [18] evaluated in Andes mountain where snowmelt significantly

the effect ofplant uptake compensation factor (EPCO) and contributes to streamflow. Overall, these studies

soil evaporation compensation coefficient (ESCO) on satisfactorily used MODIS products for data scarce

deviation of discharge values under dry and average regions. However, calculation of long-term ET from NDVI

climate condition. Kannan et al., [27] tested the effect of and LAI through SEBAL algorithm is quite complex and

four most sensitive parameters on streamflow components cumbersome. MODIS product (MOD16A2) of global ET

by varying OAT at low, medium and high parameter data prepared by Mu. et al. [45] and [46] at 1 km spatial

values. Mosbahi et al.,[28] compared Nash-Sutcliffe resolution can be used to calibrate SWAT model [47]. 

coefficients of simulated runoff at various points in a Hydrological information in developing countries, like

range of sensitive parameter values by varying OAT. India are limitedly available. Additionally, alteration of

In gauged basins, availability of observed data makes land use practice, climate change, industrialization and

it easier for realistic simulation. But, for the ungauged high rate of water consumption has raised big question on

basin accurate estimation of hydrologic variables is water quality and its availability for future. Hence,

difficult and challenging task [23]. The studies that hydrological modeling for data scarce basins is required

simulated  hydrologic  behaviour  of ungauged  basins by planners and managers for sustainable management of

are either based on physical considerations or other water resources. In the present study, water balance

theories, like Grey information theory, fuzzy theory etc. components were simulated with SWAT model for Sirsa

[29,30]. International Association of Hydrological river basin, an ungauged tributary basin of Satluj river in

Sciences (IAHS) adopted the ‘Predictions in  Ungauged the western Himalaya, India. This study is mainly focused

Basins’ (PUB) in 2003 to improve research on hydrologic to develop a simple and efficient approach for calibration

simulation for ungauged basins [31]. Several studies of physically based hydrological model in data limited and

found regionalization approach as most suitable method ungauged  basin.  The  study  used  remote  sensing data



7  International Conference on Water Resources and Arid Environments (ICWRAE 7): 629-643th

631

Fig. 1: Location Map

derived evapotranspiration to parameterize SWAT model The study basin is located in sub-tropical monsoon

through manual calibration. Variation in modeled climate with a mean annual temperature of 23.5 C and an

hydrological components with changes in sensitive annual mean rainfall of 900mm. About 80% of annual

parameter values was also experimented. precipitation is received during summer monsoon (June -

Study Site: The Sirsa river basin, a downstream tributary classes in the basin are dense forest, open forest and

channel of Satluj river, flows through Himachal Pradesh, agricultural land.The major soil type of the study basin is

Haryana and Punjab states in India. The study site covers sandy loam (Central Ground Water Board 2007). The

approximately 670 km  area,of which 75% lies in Solan valley region (Dun) is dominantly covered by sandy loam2

district of Himachal Pradesh. The basin extends from soil, while loamy skeletal soil is found in

30 49'22? to 31 11'00? N latitudes and 76 32'48? to Kasauli–Ramshahr ranges. Soil layers are quite thick in

76 59'22? E longitudes in western Himalaya at the fringe the intermontane valley and outer Himalaya than

of Ganga plain. The basin is an intermontane river system, Kasauli–Ramshahr ranges. Soils are characterized by low

bounded by outer Siwalik range in the south-west and to moderate permeability. Major industrial hub of

Kasauli–Ramshahr Tertiary ranges in the north-east Himachal Pradesh, i.e. Baddi-Barotiwala-Nalagarh corridor

(Figure 1). Elevation of the basin varies between 250 and is located in the study basin. Rapid industrialization and

1900 m, almost half of which is characterized by urbanization has increased water demand and intervening

intermontane valley (Nalagarh valley). The basin hydrologic process of the basin.

landscape is characterized by ridge and valley

topography, eroded undulating surface, flat alluvial fan Materials and methods

etc. The tributaries of Sirsa River that originate from

Kasauli–Ramshahr ranges are long; while rivulets SWAT Model: The Soil and Water Assessment Tool

developed in the outer Siwalik are too short. The drainage (SWAT) model has been used in this study (SWAT

morphometry indicates that the basin is elongated and version 2005). SWAT is a continuous time, physically

well drained with an average drainage density of 3 km/km based semi-distributed hydrologic model that simulates2

[48]. hydrologic components on daily basis.The model

o

September). The dominant land use land cover (LULC)
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accountsfor large-scale spatial variability of hydrologic

processes partitioning a basin into a numbers of land

parcels in two phases. Initially, based on topography, the

basin is divided into numerous sub-basins, considering

drainage area threshold. Then, sub-basins are further

segregated into numerous conceptual homogeneous land

parcels, known as hydrologic response units (HRUs)

combining slope, soil and land use layers. 

Water budget of surface, sub-surface and deep

aquifer is calculated for each HRU and routed at basin and

sub-basins. SWAT model simulates various hydrological

components, like evapotranspiration, surface runoff,

lateral flow, baseflow, deep aquifer recharge etc. based on

water balance equation expressed as follows:

where, SWt is the final soil water content (mm), SW0 is

the initial soil water content on day i (mm), Rday, Qsurf,

Ea, wseepandQgware precipitation (mm), surface runoff

(mm), evapotranspiration (mm), seepage flow (mm) and

return flow (mm) on day i, respectively.

SWAT model offers two methods for surface runoff

simulation, of which SCS Curve Number method [8] was

opted in this study. Potential evapotranspiration (PET) is

calculated using Penman–Monteith method [49] and

Hargreaves method [50], though Priestley-Taylor method

isalso offered by the model. Percolation is estimated by

storage routing method, while muskingum method is used

for channel routing. Most importantly, SWAT system

embedded within GIS interface is morehelpful to integrate

several spatial information, including topography, soil,

land cover, climate etc [15]. A more detailed description of

the model is found in Neitsch et al., [29] and online

documentation (http://swatmodel.tamu.edu/).

Data Preparation: Topographic data, land use and soil

data, meteorological data are essentially required for

SWAT model setup. To input topographic information,

Advanced Spaceborne Thermal Emission and Reflection

Radiometer Global Digital Elevation Model (ASTER

GDEM) of 1 arc-second resolution was used. A soil map

of 1:125,000 scale was acquired from National Bureau of

Soil Survey and Land Use Planning (NBSS & LUP). Soil

classes were reclassified according to SWAT soil

database. Land use/land cover (LULC) information was

acquired from Landsat TM image.  A  LULC map  of  2009

Table 1: Statistics of parameters used for calibration.

Sensitivity report

-------------------------------

Parameter Rank Mean value Calibrated final value

GWQMN 1 0.26 46.44

ALPHA_BF 2 0.22 0.2

REVAPMN 3 0.19 46.5

GW_REVAP 4 0.06 0.03

RCHR_DP 5 0.056 0.36

CN2 6 0.041 *

CANMX 7 0.035 5

EPCO 8 0.022 0.6

SOL_AWC 9 0.01 0.09

SOL_Z 10 0.009 480

SOL_K 11 0.006 10

ESCO 12 0.005 0.3

GW_DELAY 13 0.005 18

* Varies with LULC and soil types

was prepared from Landsat data based on supervised

classification. In absence of long term in-situ

meteorological data, gridded raster climatic data of

NCEP/NCAR Global Reanalysis Products of Global

Meteorological Forcing Dataset for Land Surface

Modelling (ds314) was used in this study. Global gridded

datasets of 1o spatial resolution was collected from

Computational and Information Systems Laboratory

(CISL) archive (http://rda.ucar.edu/datasets/ds314.0/). The

meteorological data, that included minimum and maximum

temperature, precipitation, solar radiation, wind speed and

relative humidity, were collected for two grid locations

with the help of python programmingfor the period of

2003–2008.Climate data was prepared in suitable format for

SWAT2005 as guided by Neitsch et al., [51].

As Sirsa basin is ungauged, hydrograph data was

unavailable to calibrate SWAT model. Hence, the model

was parameterized by comparing SWAT simulated ET

with  MODIS  ET. MODIS evapotranspiration data

product at 1-km spatial resolution for the period of

2004–2008 (MOD16A2, 8-day interval) acquired

fromftp://ftp.ntsg.umt.edu/pub/MODIS/NTSG_Product

s/MOD16/. The datasets were prepared by Mu. et al.,

[45,46] for the globe. Coupling MODIS land cover, albedo,

Leaf Area Index (LAI) data and daily global

meteorological reanalysis data (GMAO) of 1.00 ×1.25

resolution, land surface ET datasetwas prepared at an 8-

day interval. Based on  Penman-Monteith  method  [49]

ET was calculated considering, soil heat flux, evaporation

from wet and moist soil, day and nighttime transpiration

etc. [45,46]. However, MODIS ET data was considered as

actual  ET  for calibration and validation of SWAT model.
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Parameter Sensitivity and Adjustment: For this study, RESULTS AND DISCUSSIONS

twelve sub-basins were delineated from DEM, considering

2000 ha minimum drainage area and fifth order stream as Sensitivity Analysis: LH-OAT based sensitivity analysis

threshold. Overlaying LULC, soil and slope layers sub- was performed to identify and choose influential

basins were further divided into 179 HRUs.Afterwards, parameters by ignoring redundant parameters. The most

climate input parameters were loaded to run the model for sensitive parameters found in this study are: curve

the period of 2001-2008, considering first three year as number (CN), soil available water capacity (SOL_AWC),

warm-upperiod. After initial SWAT run, sensitivity soil depth (SOL_Z), soil evaporation compensation factor

analysis was performed based on Latin LH-OAT method. (ESCO), saturated hydraulic conductivity (SOL_K),

To make calibration process easier, most sensitive threshold depth of water in the shallow aquifer required

parameters were manually varied once-at-a-time (OAT) for return flow (GWQMN), groundwater ‘revap’

within the range as suggested in the SWAT user’s coefficient (GW_REVAP), groundwater recession factor

manual. The analysis was carried out for 20 model (ALPHA_BF) etc. Table 1 lists rank of sensitive

parameters with 10 intervals in Latin hypercube (LH) parameters and their final values. The sensitivity of

sampling.The rate of change in selected hydrological groundwater parameter (.gw), soil parameter (.sol) and

components (model output) with respect to change in HRU parameter (.hru) to surface runoff, stream-flow,

each parameter values was tested to identify suitable baseflow, deep aquifer recharge and evapotranspiration

parameter values. are discussed in this section. During this process, one

Calibration and Validation: In this study, calibration of constant.

SWAT model parameters was performed by comparing

SWAT simulated ET with MODIS ET, due to lack of Groundwater Parameters (.gw): The sensitivity of

measured stream-flow data. The SWAT simulated daily groundwater parameters, particularly GWQMN,

ET data were assembled at 8-day and monthly interval to REVAPMN, GW_REVAP and RCHR.DP on hydrological

calibrate for the periods of 2004 – 2006 and validate for components are presented in Figure-2. Parameters are

periods 2007 – 2008.The model is calibrated manually by found sensitive to baseflow and consequently to stream-

editing sensitive parameters for all plausible hydrological flow.

components [14]. However, the knowledge of rate of

change in hydrologic components with variation of model GWQMN: Variations in water balance components for

parameters values increased the efficiency of the changes  in  GWQMN valuesarepresented in Figure -2a.

calibration procedure. During calibration, groundwater It is clear that with the increase of GWQMN, water yield

parameters (.gw), soil parameters (.sol) and HRU and baseflow decreased. For high values of GWQMN a

parameters (.hru) were iteratively modified until simulated considerable portion of infiltrated water is stored in soil;

ETclosely match with MODIS ET. Initially, comparisons while, at a low value of GWQMN, SWAT produces more

between SWAT ET and MODIS ET were made for annual baseflow that, in turn, increases stream flow also [27].

values. Afterwards, parameters were fine-tuned for Noticeably, at initial value of GWQMN(up to 60) the rate

monthly and daily (8-day) values until the modeled ET of decrease in baseflow and stream flow is low to

was acceptable according to performance ratings moderate. But, afterwards rate of decrease increases

proposed by Moriasi, D.N., et al., [52]. As parameters abruptly up to GWQMN value of 175. Baseflow and

were adjusted by only comparing ET, uncertainty in streamflow remain constant while GWQMN value exceeds

separation of streamflow components was likely to 500. Kannan,.et al., [27] recommended low GWQMN for

subsist in simulation. Hence, simulated results were realistic prediction of daily stream flow.

checked  with  SWAT  Check  program  [20].  Based  on

the   error   report,   surface   runoff,   lateral  flow, REVAPMN:  REVAPMN  is  the  threshold  depth of

baseflow and deep aquifer recharge was adjusted by water  in  shallow  aquifer  that  controls  water movement

varying  model  parameters  until  satisfactory  results to   unsaturated   zone   for   re-evaporation   to   occur.

were obtained. Finally, model performance for most With   the   increase   of   REVAPMN,   baseflow   as  well

suitable set of parameters values was again tested and as  streamflow  increased   (Figure-2b).   But   after a

validated. certain   value   (REVAPMN=60),  both   remain  constant.

parameter was changed randomly, while others were kept
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Fig. 2: Sensitivity of groundwater parameters to different water balance components

Because at this certain threshold value no ‘revap’ will GW_REVAP: Groundwater ‘revap’ coefficient

occur for the basin. At low REVAPMN, as ‘revap’ from (GW_REVAP) controls the amount of water that will

the soil is high, the contribution of baseflow to stream- ‘revap’ to upper soil layer. GW_REVAP value ranges from

flow is very low. In this study, the REVAPN value was 0.02 to 0.2. For a high value of the parameter, the model

finally adjusted close to GWQMN. returns  water  to  root  zone  for ‘revap’, hence,baseflow
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Fig. 3: Sensitivity of soil parameters to different water balance components 

contribution to streamflow decreased. This parameter comparison during calibration. Based on extensive

moderately controlled baseflow and streamflow in this literature findings these parameters were adjusted in ‘trial

study (Figure-2c).However, GW_REVAP value was finally and error’ method and verified repeatedly with

set to 0.03 for this study. SWATCheck program. 

RCHR_DP: RCHR_DP controls the amount of water that Soil Parameters (.sol): Soil parameters, mainly SOL_Z,

will move from shallow aquifer to deep aquifer. It was SOL_AWC and SOL_K showed significant control on

found fifth-rank sensitive parameters in this study. With each water balance components (Figure -3). The

the increase of parameter value amount of baseflow, as sensitivity results of these three parameters are discussed

well as streamflow decreases and deep aquifer recharge below.

increases linearly (Figure 2d).This parameter is most

significant for separation between shallow and deep SOL_Z: Hydrologic components showed curvilinear

aquifer recharge. relation with SOL_Z values(depth of soil layer). An

However,  adjustment  of  groundwater configuration increase in SOL_Z value increased surface runoff and

parameters  was  very  challenging  task,  as  the evapotranspiration and decreased total streamflow,

parameters did not affect ET that was considered for baseflow    and    deep    aquifer    recharge    (Figure  -3a).
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As soil depth increases, root zone depth and soil profile quite similar with the findings of Kannan et al. [27]. Till

depth increases. It increases water holding capacity, as SOL_K value approaches 10, baseflow, streamflow and

well as, water availability in the soil profile that, in turn, groundwater recharge increased significantly as

increased evaporation from soil profile and transpiration infiltration and percolation capacity increased. But

from plants. Thus, increase of vadose zone depth caused beyond  SOL_K  value  10,   most   part   of  infiltrated

decrease in shallow and deep aquifer recharge and water converted  as  lateral  flow,  rather  than  ground

increase in evapotranspiration (ET). In the SWAT model, water  recharge.  Albeit,   the   contribution   of  surface

less depth of soil profile helps in quick downward flow and baseflow to streamflow is reduced, but

movement of water from lowest soil layer to shallow substantialincrease  in  lateral  flow  hiked

aquifer. With increase of soil depth, delay in water streamflow(Figure 3c).

movement to shallow aquifer will increase. Thus,

groundwater recharge decrease and ET will increase. From HRU Parameters (.hru): EPCO, ESCO and CANMX were

the Figure -3a it is assumed that with the increase of soil found most sensitive HRU configuration parameters in

water content due to increase of soil depth, surface runoff this study. These parameters were found comparatively

increased. But, as the rate of decrease of baseflow was less sensitive for water balance components (Figure 4).

higher than increase of surface runoff, streamflow trimmed

down. However, interaction of this parameter with other EPCO: The plant uptake compensationfunction (EPCO)

soil and groundwater parameters can change its influence controls ET through allowing plant to uptake water from

to hydrologic components. layers within rooting zone [18] (Wu and Johnston, 2007).

SOL_AWC: SOL_AWC (available water capacity in soil) value, model allows plant to uptake water from top soil

is one of crucial parameters that determine field capacity layer; but, as EPCO approaches 1.0, plant water uptake

of soil, ranges between 0-1. In this study, SOL_AWC was demand will be met from deep soil layer also. In this study,

found sensitive to various water balance components in with the increase in EPCO value ET increased linearly,

a similar pattern (Figure 6.3b).Initially, surface runoff, though the rate of increase is less (Figure 4a).As for

stream-flow, baseflow and deep aquifer recharge was higher EPCO value, model allows to meet the more water

decreased and evapotranspiration increased with the uptake demand of plant from lower soil layer, ET increased

increase of SOL_AWC value up to 0.2. But, in marginally.

betweenSOL_AWC value of 0.2 and 0.3, response of each

component is reversed. Finally, beyond SOL_AWC value ESCO: The soil evaporation compensation factor (ESCO)

0.3, the parameters show no sensitivity to the water controls evaporation from soil by modifying depth

balance components.It can be concluded that with a distribution in soil profile. ESCO is found sensitive to all

fractional increase in SOL_AWC, evapotranspiration from water balance components(Figure 4b). ET decreased in

soil and canopy increases as soil moisture increases. But, curvilinear shape with the increased of parameter value

after a critical point (here 0.2), with the increase of and rest components increased with moderate rate (Figure

SOL_AWC percolation to shallow and deep aquifer 4b). As the value of ESCO is reduced, the model is able to

increased. extract more of the evaporative demand from lower level

SOL_K: Saturated hydraulic conductivity of soil (SOL_K) ET decreased and consequently surface runoff, baseflow

plays a significant role in  hydrologic  processes.  The and other components increased. The sensitivity of this

infiltration and percolation capacity of soil is directly parameter is quite similar to previous studies [18,27].

proportional to the soil saturated hydraulic conductivity

(Neitsch et al., 2005a).At low value range (0-10) SOL_K CANMX: A change in the value of the maximum canopy

was found very sensitive to all hydrological components. storage (CANMX) affects ET and other water balance

When SOL_K approaching 0 to 10, streamflow, baseflow components. Figure 4c shows that CANMX is less to

and deep aquifer recharge increased, though, surface flow moderately sensitive to all components. With the increase

and ET decreased (Figure 3c).But, when the value in CANMAX, ET has increased slightly; whereas other

increased from moderate to high, value of these components have decreased but at a low rate. As

components decreased, except streamflow. The results are maximum  canopy  storage  is increased,   interception  is

The value of EPCO ranges between 0 and 1. At low EPCO

[34], resulting an increase in ET. For high ESCO values,
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Fig. 4: Sensitivity of HRU parameters to different water balance components

increased. As a result, surface runoff, baseflow and deep Moriasi et al. [52].The coefficient of determination (R2)

aquifer recharge have decreased and concomitantly the values for daily simulations range from 0.74 to 0.77 and

amount of evaporation of intercepted water is increased. monthly values range from 0.81 to 0.91.Likewise, Nash-

However,CANMX found less sensitive to all components Sutcliffe efficiency (ENS) varies from  0.53  to  0.72  for

as compared to other parameters. daily and 0.71 to 0.91 for monthly calibrations and

Calibration and Validation: Modelled ET, simulated using varies in range of 0.53-0.68 and 0.33-0.54, respectively.

Penman-Monteith and Hargreaves methods, was Though,  percent  bias   (PBIAS)   showed  relatively

compared with MODIS ET for calibration (2004–2006) and better performance of Penman-Monteith method than

validation (2007–2008) and illustrated in Figure 5. The Hargraves  method,  but  R2, ENS and RSR are found

statistical performances of the SWAT model using these better for Hargraves method. During calibration, positive

two methods are presented in Table 2.The daily and values of PBIAS for Hargraves method indicate

monthly validation results of SWAT simulation showed underestimation  of  bias  and  negative values for

better than calibration results.The overall statistical Penman-Monteith method (Table 2) indicate

performance of the model was found ‘good’ for daily (8- overestimation  of  bias  [3].  However,  actual  deviation

day composite) simulations and ‘very good’ for monthly of SWAT   simulation   from   MODIS  ET  needed  to

simulations,  according  to  the  criteria  provided by asses   to    chose    best    method    for    ET    simulation.

validations.RSR  of  daily  and  monthly  simulations
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Table 2: Statistical performance of SWAT model during calibration of validation of ET result

R RSR PBIAS (%) E2
NS

------------------------ ---------------------- -------------------------- ------------------------

HAR PM HAR PM HAR PM HAR PM

Daily Calibration 0.75 0.74 0.57 0.68 2.84 -1.97 0.67 0.53

Validation 0.75 0.77 0.53 0.54 2.43 0.21 0.72 0.70

Monthly Calibration 0.81 0.82 0.48 0.54 2.84 -1.97 0.76 0.71

Validation 0.89 0.91 0.33 0.31 2.43 0.21 0.89 0.91

Note: HAR- Hargreaves method, PM- Penman-Monteith method

Fig. 5: Comparison  of  the  daily (8-day composite) ET between SWAT simulation and MODIS data, (a) calibration

(2004-2006) and (b) validation (2007-2008) period.

Fig. 6: Comparison  of  the  monthly  ET between SWAT simulation and MODIS data, (a) calibration (2004-2006) and

(b) validation (2007-2008) period.
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Fig. 7: Box whisker plot of daily (8-day cumulative)

differences in ET, ?ET (MODIS-SWAT) during (a)

calibration, (b) validation and (c) monthly

difference for each month. The box-whisker plots

show the median, first and third quartiles. The

caps at the end of the boxes show the extreme

values. MODIS – SWAT (Hargreaves method) in

red and MODIS – SWAT (Penman-Monteith

method) in blue.

During calibration of daily simulation, the differences

between MODIS and SWAT ET ranged as 0–11.35 mm/8-

day (mean 3.31 mm) and 0.05–16.80 mm/8-day (mean 3.94

mm) for Hargreaves and Penman-Monteith method,

respectively. Similar statistics for monthlycalibration

(Figure-6)  varied   in   a  range  of  0.3  –32.42  mm/month

(mean 10.81mm) and 0.5–36.86 mm/month (mean 11.92mm)

for Hargreaves and Penman-Monteith method,

respectively. During validation period, the difference

varied as 0–18 mm/8-day (mean 3.31mm) and 0.03–20.55

mm/8-day (mean 3.55 mm) for Hargreaves and Penman-

Monteith method, respectively, in daily simulation. While,

for monthly validation deviation of Hargreaves and

Penman-Monteith method 0.44–24.62 mm/month (mean

9.24 mm) and 0.13–24.13 mm/month (mean 9.30mm),

respectively.

Monthly difference between SWAT simulated ET

and MODIS ET for daily and monthly simulation shown

in box-whisker plots (Figure 7). The simulated ET (by both

methods) deviates from MODIS ET by very less amount

during August–March whereas it increases during

April–July. During the calibration of daily ET, less

variation is observed in post-monsoon and winter season,

with median close to zero (Figure 7a).While, deviation is

moderate (-8 to 5) during spring and it increases from

summer to monsoon (wet) period.From Figure 7a, it is also

observed that the deviation of simulated ET from MODIS

ET is comparatively less while using Hargreaves method

rather than Penman-Monteith method.The box-whisker

plot of daily simulation shows comparatively better result

(less deviation) during validation period (Figure 7b) than

during calibration period. However, in both, daily

calibration and validation period, difference of model

simulated ET from MODIS ET is less in late monsoon

period.Likely to daily simulation, the monthly difference

between SWAT ET and MODIS ET (Figure 7c)for

monthly simulation is very less during post monsoon

period and winter period (October–January), but positive.

It indicates underestimation of the model with at

consistent low magnitude. The average monthly

difference during October–December is 8.9 mm/month and

10 mm/month for Hargreaves and Penman-Monteith

method, respectively. In April–July, the median of

difference by both methods is negative, indicating

overestimation by the model. In the month of July, the

median of difference in Hargreaves method is quite less

(<-10 mm/month) than Penman-Monteith method (>-20

mm/month). It indicates that Hargreaves method simulates

more closely to MODIS ET than Penman-Monteith

method during peak rainfall period. However, deviation in

model simulation is minimum in December and maximum in

July.

The underestimation by the model is maximum during

August – September i.e. late monsoon period. The

deviation of simulated ET from MODIS data is maximum

in Hargreaves method during this period. However, from

Figure 6.7c, it is clear that the model simulates accurately
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during winter season, overestimates during spring and meteorological data, the study used gridded reanalysis

mid-monsoon period and underestimates during post

monsoon and early winter period. This analysis could be

verified from Figure 6.8a in which average monthly ET,

simulated from SWAT (Hargreaves and Penman-Monteith

method) and MODIS data for the period of 2004 – 2008 is

plotted. The scatter plot of monthly simulated ET against

MODIS ET indicates that SWAT simulation using

Hargreaves method and Penman-Monteith method

reasonably match with MODIS ET (Figure 6.8b). In Figure

6.9, monthly cumulative plot of SWAT simulation using

both methods and MODIS for the period 2004 – 2008 are

shown. It also shows that the SWAT simulation is closer

to MODIS ET data. The calibration and validation results

also indicate that the SWAT model could be effectively

applied for simulation of other hydrologic components.

Hydrologic Simulations (Water Balance): Calibrated

parameters were finally used for hydrologic simulation of

Sirsa basin for the period of 2003–2008. On average 51%

and 39 % of total rainfall is contributed as ET and

streamflow. Annual streamflow varies in range of 105 mm

(2004) to 496 mm (2006). The average monthly streamflow

varies between less than 1 mm (December) and 90 mm

(August).About 78% (240 mm) of total annual streamflow

is yielded during July to September, while negligible

streamflow noticed in early winter and pre-monsoon

period.Annually, water yield is dominantly contributed

from surface runoff (60%).Lateral flow and baseflow

contributes to streamflow by only 13% and 27%,

respectively.During winter (January-February) and

monsoon (June-September) period, about 57% of total

streamflow is contributed from surface runoff, because of

maximum precipitation. During post-monsoonperiod,

though streamflow noticed very negligible amount, but

mostly(80%) contributed from baseflow. Net contribution

of lateral flow and baseflow maximally noticed in July-

August and August-September, respectively. The

monthly ET varies between 4.60 mm (December) and 91.50

mm (July).Only during the monsoon period the average

monthly ET is above 40 mm, while during the rest of

period, especially winter and post monsoon period ET is

very low. March–April (spring) and October–November

(post-monsoon) months are the water stressed period

during which ET exceeds rainfall.The rainfall in these

months was insufficient to met vegetation and crop water

demand and supplied from soil water storage. 

Limitations: However, there might be some uncertainty in

model simulation raised from error in input data,

calibration approach etc. due to unavailability of observed

data that was coarse in resolution for this study.

Moreover, climate data used in this study and used for

MODIS ET calculation are collected from two different

sources. It may arise ambiguity in parameterization

process

CONCLUSIONS

Hydrologic modelling in mountainous regions is

challenging because of scarcity of climatic data, extreme

elevation gradients and orographic effects. In this study

SWAT model together with MODIS ET have been used

to simulate the hydrological response. Modelled ET,

simulated using Penman-Monteith and Hargreaves

methods, was compared with MODIS ET for calibration

(2004–2006) and validation (2007–2008).The daily and

monthly validation results of SWAT simulation showed

better than calibration results.The overall statistical

performance of the model was found ‘good’ for daily (8-

day composite) simulations and ‘very good’ for monthly

simulations, according to the criteria provided by Moriasi

et al. [52]. The coefficient of determination (R2) values for

daily simulations range from 0.74 to 0.77 and monthly

values range from 0.81 to 0.91.Likewise, Nash-Sutcliffe

efficiency (ENS) varies from 0.53 to 0.72 for daily and 0.71

to 0.91 for monthly calibrations and validations.RSR of

daily and monthly simulations varies in range of 0.53-0.68

and 0.33-0.54, respectively.Though, percent bias

(PBIAS)showed relatively better performance of Penman-

Monteith method than Hargraves method, but R2, ENS

and RSR are found better for Hargreaves method. Prior to

calibration, sensitivity analysis was performed. The most

sensitive parameters were randomly varied manually

within predefined boundary to understand their

sensitivity to various hydrologic components. The most

sensitive parameters for this study basin are groundwater

related parameters (GWQMN, REVAPMN, GW_REVAP

and RCHR_DP), soil related parameters (SOL_Z,

SOL_AWC and SOL_K) and HRU related parameters

(EPCO, ESCO and CANMX).Generally, it is an efficient

and simple approach for identification of sensitive

parameters and calibration of model parameters for data

scarce region. However, there might be some uncertainty

in model simulation raised from error in input data,

calibration approach etc. due to unavailability of observed

meteorological data, the study used gridded reanalysis

data that was course in resolution for this study.

Moreover, climate data used in this study and used for

MODIS ET calculation are collected from two different

sources. It may arise ambiguity in parameterization

process.
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