
8  International Conference on Water Resources and Arid Environments (ICWRAE 8): 256-269th

22-24 January 2019, Riyadh, Saudi Arabia

Corresponding Author: M. Azeem Khan, Washington State University, Pullman WA.  E-mail: azeemwsu@gmail.com.
256

Evaluation of METRIC for Estimation of Actual Evapotranspiration Using
Satellite Imagery from Dryland Wheat Based Agricultural Systems in IPNW

M. Azeem Khan, Claudio O. Stckle, Richard G. Allen, Jinshu Chi,1 2 1

Eric S. Russell and Ricardo Trezzab1 1

Washington State University, Pullman WA1

University of Idaho, Kimberly ID2

Abstract: Evapotranspiration (ET) is the largest consumer of fresh water resources globally and spatio-temporal
information  on  actual  ET  (ET )  is  important  to  ensure  sustainable  management  of  water  resources.a

Surface energy balance applications based on satellite remote sensing can provide regional ET  estimates witha

spatio-temporal  variations.  This  study  implemented  the  surface  energy  balance algorithm METRIC
(Mapping Evapotranspiration at High resolution with Internalized Calibration) for use in the dryland farming
region of the US Inland Pacific Northwest (IPNW). The study area had four eddy covariance flux towers
deployed within a single scene setting of the Landsat 8 path 43 row 27, which allowed comparison with the ETa

estimated by METRIC. Estimated and measured daily ET  showed a strong positive linear correlation with aa

Pearson’s r value of 0.90 to 0.98 and a SEE ranging from 0.3 to 0.5 mm/day. The higher bias was generally
associated with fallow periods. The Nash-Sutcliffe efficiency coefficient showed that METRIC is 82-98%
efficient in estimating ET . These evaluations suggest that METRIC can estimate ET  with good accuracy ata a

regional scales in dryland areas where crops are often water limited.
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INTRODUCTION algorithms that describe surface energy and aerodynamic

Evapotranspiration (ET) is the second largest term in plant density, height, vigor and water availability are
the terrestrial water budget after precipitation and it is normally homogeneous and measurement of ET and the
expected to increase with global warming [1]. Actual ET application of estimation algorithms can be relatively
(ET ) is a difficult component to assess, although a straightforward,  still  not  without  substantial challengea

number of techniques are in use ranging from point [9, 10]. However, in drylands agriculture, the
measurements to modeling and to spatially-distributed heterogeneous nature of vegetation, terrain, soils and
remote sensing estimates [2]. Ground observations based water availability make aerodynamic processes and
on conventional methods including micrometeorological surface energy highly variable and poorly defined over
methods (e.g., , the Bowen ratio, eddy covariance), models large scales. The ground parameters, including vegetation
(e.g., Penman–Monteith), weighing lysimeters and water types, elevation, terrain and land surface temperature
balance methods (e.g., non-weighing lysimeters and field have an obvious effect on spatial distribution of ET [11]
plots) are used for ET measurement at the individual plant and models cannot mimic that effect at regional scales
and field scales [3]. Although these methods offer without the use of spatial techniques and satellite images.
acceptable solutions for computing ET at a point/field The primary benefit of spatial techniques is that ET
scale over homogenous surfaces, extrapolation to larger from  the  pixel  level (usually  30 m for Landsat satellite)
spatial scales is not straightforward because of the natural to basin and regional scales can be estimated directly by
variability in environmental and land surface conditions using energy balance algorithms rather than by
[4, 5]. Satellite remote sensing of surface fluxes at diverse quantifying the other complex hydrological processes,
spatial and temporal scales has emerged since the utility which involve detailed information about soil-plant-
of the  thermal  infrared  remote sensing was recognized atmosphere interaction at high spatial and temporal scale
[6-8]. ET is typically modeled using weather data and [12-14]. A number of surface energy balance algorithms

characteristics of the vegetation. In irrigated agriculture,

a
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are used to estimate ET , that vary in mechanisms and MSMN (Moscow Mountain) (Fig. 1). All the EC flux towera

degrees of complexity [15, 16]. Mapping systems installed at these sites have similar
Evapotranspiration at high Resolution with Internalized instrumentation set up, data collection and quality
Calibration (METRIC), is so far one of the most assurance procedures, they are deployed as part of the
appreciated surface energy balance algorithms for ET same project Regional Approaches to Climate Changea

estimation [6, 10, 17-26]. METRIC estimates ET as the (REACCH) USDA-supported research program
residual of the energy balance, by virtue of its inverse (https://www.reacchpna.org/).The sites are in contiguous
calibration technique METRIC has the ability to precipitation zones of this study region with average
compensate for the biases in other components of the annual precipitation ranging from 240 to 680 mm (Fig. 1).
energy balance (e.g., Net Radiation and soil heat flux) and Most of the annual precipitation ~ 70% is received during
some components of the sensible heat flux calculations winter season [29, 30]. 
and therefore errors are reduced in ET  estimates [18]. At CFCT, CFNT and MSMN the soils are silt loama

This study reports the results of the first multi-year (Mollisol)(Soil Survey Staff, N.R.C.S. and United States
remote sensing estimates of regional ET  compared with Department of Agriculture, 1999, 2013) with 2–5% organica

Eddy Covariance (EC) measurements of water flux over matter in the top 20 cm [31]. The average high temperature
the unique and highly productive dryland wheat cropping is 26°C in the summer and the low is -4?C in the winter,
system of the Inland Pacific Northwest (IPNW). We with an overall average annual temperature of 9°C
analyze METRIC estimated ET over three sequential crop from1981–2010 [32]. At LIND the soils are silt loama

years at four sites with very different rainfall regimes in (Mollisol), with 1–2% organic matter in the top 20 cm [33].
the IPNW. The average high and low temperatures are 30°C and -6°

The overall goal of this research is to evaluate C, with an annual average of 10° C [34].The prevailing
METRIC regional ET  estimation in dryland regions of the wind directions in the region are from the southwest anda

US  IPNW.  The  study  area  included   the  dryland east. The wind-rose (Fig 1.) present the wind direction,
wheat-based cropping systems in eastern Washington, speed and frequency at all the sites during our study
where  a steep  east  to  west  precipitation gradient period. CFNT and CFCT had spring garbanzo (Cicer
occurs and dryland farmers use a wide array of wheat Arietinum, “SG”), winter wheat (Triticum Aestivum L.,
(Triticum aestivum L.) based crop rotations, from “WW”) and spring canola (SC) crops during the three
continuous annual cropping (high rainfall, high yields) to growing seasons of our study respectively. MSMN had
wheat-fallow (low rainfall, low yields every other year), spring beans (SB), spring peas (SP) and WW during the
thereby producing varying amounts of crop residues and study period. While LIND site had WW in 2013 and 2015
soil moisture patterns [27]. Though extensive studies of and it was fallow during 2014. In fallow period, the field
agro-ecosystems  have  been  performed  in  this region was tilled to build up soil moisture in the seed-zone to
[27, 28], this work is the first use of Landsat satellite increase productivity of the following WW crop. 
imagery to estimate ET in dryland Washington.a

MATERIALS AND METHODS of  eddy  covariance measurements is mentioned here.

Study Area and Field Setup: The study sites are located 2012 to  2013  has  published  in  two  separate  studies
in IPNW wheat-based cropping region, that extends from [35, 36]. The eddy covariance (EC) instrumentation at each
central Washington to eastern Washington and is site consisted of an open-path infrared CO /H O analyzer
covered by the single scene setting of the Landsat 8 OLI and three-dimensional sonic anemometer (EC150/
path 43 row 27. The EC measurements presented in this CSAT3A/EC100, Campbell Scientific, Logan, UT, USA) at
study were acquired for 2013, 2014 and 2015, from the a height of~2.0 m. Data was collected at 10 Hz by a data
Washington State University’s Dryland Research stations logger (CR3000, Campbell Scientific, Logan, UT).
in LIND and Pullman.EC flux towers are set up at four sites Measurements  used  here were collected from March,
with   contrasting   characteristics in our study region 2013 to October, 2015. The final fluxes were calculated
(Table 1.). One site is located in LIND (center-east using EddyPro®version4.2.0 (LI-COR Biosciences,
Washington) called LIND, two sites located in Pullman, Lincoln, NE, USA). Data were processed via: spike
(eastern Washington) called CFCT (Cook Farm detection and removal (Vickers and Mahrt, 1997), filtering
Conventional Tillage), CFNT (Cook Farm No-Till)and one by absolute limits and for CO  and H O signal strength
site located just outside Pullman, in Moscow, ID called below  80%.  Double  coordinate  rotation   was  used  [37]

Field Measurements: A brief overview of the filed setup

This data has been thoroughly examined and data from

2 2
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Table 1: Summary of key characteristics of study region
Characteristics CFCT CFNT LIND MSMN
Avg annual precipitation 550 mm 550 mm 247 mm 680 mm
Location 46.78°N, 117.08°W 46.78°N, 117.09°W 46.99°N, 118.60°W 46.75°N, 116.95°W
Elevation 800 masl 800 masl 475 masl 815 masl
Avg annual temp 9°C 9°C 10°C 9°C
Tillage type Chisel plow and cultivate Direct drill (no-tillage) Chisel plow and cultivate (reduced tillage) Chisel plow and cultivate
Crop rotation Continuous cropping Continuous cropping Crop-fallow Continuous cropping

Fig. 1: Locations of study sites; Washington State IPNW with the long-term average annual precipitation variations
information by location. The wind-roses present the dominant wind direction and frequencies at each site through
our time period of study

as well as frequency loss corrections [38, 39] and the missing data from 7  June to 18  July 2013, no data gaps
Webb, Pearman, Leuning(WPL) density correction [40]. were found for selected Landsat over-pass dates in this
The  flux  outputs  were  then  filtered for remaining study.
outliers using the procedure described in [41]. The flux In addition to EC measurement hourly and daily
datasets were gap filled using a combination of methods. weather information was acquired from Washington State
First,  gaps  in  the  flux  datasets  due  to  loss  of the University’s AgWeatherNet stations at Pullman and LIND
raw10 Hz data were filled using fluxes calculated by the sites [34]. 
data logger operating program, where available.
Remaining gaps in the ET, H and LE fluxes were filled METRIC Energy Balance Calculation from Satellite
using the mean diurnal variation (MDV) method [42, 43], Imagery: METRIC is a satellite image processing model
which  estimates  a flux value for a missing half-hour that estimates ET as the residual of the surface energy
period  by  averaging  the  values  of  adjacent  days at balance [44]. The energy balance can detect the impacts
that same time period. We used a time window of the ten on ET from water shortage, disease, crop variety, planting
days before and after a missing point for the MDV gap density, cropping dates, salinity and management
filling. For more detailed information on NLR and MDV practices. A simple form of the surface energy budget
gap-filling employed here[35]. However other than the equation used in METRIC is the following.

th th
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Fig. 2: A brief overview of the METRIC implementation process presenting the inputs, intermediate outputs and final
output

LE = R  – H – G (1) (3)n

where LE is latent heat flux, R  is net radiation, H is where  is air density (kg/m ), C  is air specific heat,n

sensible heat flux and G is soil heat flux, all in units of (J/kg/K), dT (K) is the temperature difference between two
Wm . in Wm , ET is calculated by dividing latent heat heights (z1 and z2) in a near surface blended layer and r2 2

flux by the latent heat of vaporization of water. is the aerodynamic resistance to heat transport (s/m)
Net radiation is the sum of all incoming and outgoing between z1 and z2. The use of near surface dT rather than

short-wave and long-wave radiation at the surface and is estimates for air and surface temperature, directly, in
computed from satellite measured narrow-band reflectance Equation (3) is done to reduce impacts of bias in
and surface temperature (T ) as described by [45]. temperature, further details about this procedure can bes

R  = R  – R  + R  – R  – (1 – ) R (2) METRIC uses inverse modeling approachto estimaten s s L L o L

Sensible  heat  flux is the convective heat loss from called CIMEC (calibrating using inverse modeling at
the surface to the air created by a near-surface extreme conditions). The calibration is performed using
temperature gradient. Soil heat flux is the rate of heat known ET at extreme conditions (cold and hot pixels) in
conducted into soil and vegetation and is estimated in satellite image and biases of all inputs are incorporated
METRIC from, R , T and the Normalized Difference into the internal calibration. To determine dT in equationn s

Vegetation Index, NDVI [26]. H is estimated in METRIC (3) a cold and a hot pixel are selected based on the criteria
using a one-dimensional, blended aerodynamic, mentioned by [6]. Briefly, the selection of cold and hot
temperature gradient-based method. pixels  is  such  that  the  cold  pixel   is   selected   from an

3
p

ah

found in [6].

dT for the entire image. This technique in METRIC is
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Fig. 3: An example of the relationship of NDVI with LST_DEM (Land Surface Temperature adjusted for elevation, K) for
one satellite image in this study. Each point in the image represents a NDVI and LST_DEM value of a sample pixel
(30 m). Thousands of sample pixels were picked up as points of interest for calibration sampling in our region of
study. This plot isused as aid to select cold and hot pixels; this relationship was plotted for each image during
the process of their calibration

agricultural field with a higher NDVI (usually above 0.75), A hot pixel is supposed to have zero ET and a large
lower T (with the assumption that the available energy dT value and the value of H can be calculated from R ands

being  used  to  evapo-transpire water) and an albedo G of that pixel. Sometimes the hot pixel may also have ET
(0.18-0.24) within the range of fully covered agricultural especially after a rainfall event, therefore, METRIC used
fields. Similarly, hot pixel is assumed to have no ET and is a daily soil water balance and evaporation model that
selected from the bare soil with a low NDVI not exceeding accounts for any residual evaporation from bare soil
0.2 (usually 0.1-0.15) and a high T  and albedo within the stemming from antecedent precipitation events [9, 47]. s

range of bare agricultural fields (0.17-0.23). Figure 3 plot The dT value for hot pixel can be calculated using
NDVI vs LST_DEM assist in identifying the range of T equation 5.s

expected for cold and hot pixels.
The dT associated with a well vegetated pixel (cold dT  = H × r  / (  × C ) (5)

pixel) is given as:

dT  = (R  – G – (0.85 × Et ) ×r  /(  × C ) (4) and radiometric surface temperature, T  and thecold n r ah p

Et  is calculated using weather data using the comparisons of final ET estimates over a range of dTr

standardized ASCE Penman-Monteith [46] equation for values [24, 49] and theoretical arguments [45] suggest that
clipped-grass reference here. Normally for irrigated this assumption can apply to a wide range of conditions.
agriculture alfalfa-based reference is used and to compute
the hourly ET for satellite overpass time the ET  is dT = aT  + b (6)r

multiplied by the 1.05. But in dryland region of our study
we found out that alfalfa reference and 1.05 constant where  and b are calibration coefficients that can be
value was overestimating the cold pixel LE. So we used found as:
grass-based ET  and multiplied that with 0.85 to estimatedr

cold pixel LE in typical settings of our study region
(discussed in detail in results section).

n

cold ah p

A linear relationship is assumed to exist between dT
s

relationship is explained by equation (6). Research by [48],

s
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T is adjusted by delapsing it to a common arbitrary calculating G at the CFNT site. G measurements can affects

elevation datum, with an image specific lapse rate of 6 considerably the energy balance for short timescale but
K/km [45] to account for changes in T  caused by warming do not influence lambda E values in direct ECs

and cooling of air mass with elevation. measurements [51]. Since G tends to be zero at daily

Satellite Data and Preprocessing: Key input data for performed energy balance closure on daily time series of
METRIC are: satellite images, hourly and daily weather Rn, H and LE over the entire measurement period at LIND
data for water balance, land use and land cover image and site in absence of G measurement.
digital elevation model. Landsat satellite path 43, row 27 A lack of energy balance closure in turbulent surface
covers our study region and Landsat 8 OLI satellite heat fluxes measured by EC flux network was revealed in
images are used for this research. These images are many studies [13, 52, 53]. However, we were unable to find
acquired from USGS EarthExplorer website through the consensus on a single method for forcing energy balance
Glovis preview tool. The images downloaded had been closure (EBC). The closure between footprints of heat
preprocessed by USGS EROS using the LPGS flux,  H+LE,  tends to be less than the available energy
preprocessing system resulting in the L1T image product. (AE) flux, R -G. The lack of EBC is normally caused by the
The images are corrected for radiometric and terrain non-uniform footprints for components of AE and
effects and are georectified as part of the preprocessing. turbulent heat fluxes as well as instrumental errors and
METRIC model is primarily for application with high heterogeneous characteristics of landscape. Therefore, it
resolution (30 m) Landsat imagery to achieve ET product is inappropriate to allocate all errors of EBC to LE and H
that is useful for monitoring water consumption field by only because R  and G can have their own error sources
field basis. The high-resolution ET is necessary to that can significantly affect EBC. The linear regression
produce seasonal ET for individual fields as well as for method to estimate closure error at CFNT site for the
accurate regional ET estimates. three-month period (March, April and May, 2013) shows

The satellite images with recorded radiations in that the slope and the intercept for the regression of H +
multiple bands are processed in METRIC to provide LE on R -G are 0.83 and 6.00, respectively, with an R of
NDVI, LAI and surface albedo from visible and near 0.95.The 83% closure of the energy balance for CFNT is
infrared bands and radiometric surface temperature and near the average (80%) for good flux measurements using
surface emissivity from mid and thermal infrared bands. EC methods [54-56]. A portion of the gap in the energy
These variables are then used to partition the available budget at the CFNT site could be accounted for if we had
energy into sensible and latent heat flux components. measured the heat storage in the air below the
These surface parameters together with measured field measurement height. 
data are used to solve the energy balance, where actual In addition to above, a linear regression between
ET is taken as a residual term. sensible heat flux (H), latent heat flux (LE) and the

Energy Balance Closure of EC Measurements: An performed considering that G will have minimal effect on
energy balance was conducted to assess the EC flux data energy balance at daily time step [51]. The results of LIND
quality. Ideally, the energy balance can be closed if both site energy balance closure analysis have satisfactory
sides in Eq. (7) are accurately quantified [50]. outcomes presented in Table 2.

(R  – G) = (H + LE) (7) Evaluation Period: Four Eddy Covariance flux towers weren

where R  (Wm ) is the net radiation measured by a net path 43 row 27. The remotely sensed ET  was comparedn
2

radiometer, H and LE (Wm ) are sensible and latent heat against measured ET at four eddy covariance stations in2

fluxes and G (Wm ) is soil heat flux. each image for a total of 26 images. The ET  was estimated2

Half-hourly time series of Rn, H, LE and G over the from  METRIC for three growing seasons staring from
spring period (March–May, 2013) at CFNT site were 2013 onward to 2015. The growing season starts from crop
analyzed  to  determine  the   energy   balance  closure. emergence and ends at harvest. The CFCT, CFNT and
This period was selected because there were MSMN  has  crops  in  all  the  three growing seasons,
simultaneous  measurements  of  soil heat flux, soil with rotations mentioned above and LIND was fallow
temperature and soil water content, which allowed for during 2014 and had WW in 2013 and 2015. Landsat 8 OLI

timescale especially in arid climates. Therefore, we also

n

N

n
2

available energy (R ) at daily time scale for LIND site wasn

deployed within a single scene setting of the Landsat 8
a

a
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Table 2: Regression coefficients for 3 years EC data of daily time scale for LIND site
Data (daily time scale) Intercept (C ) W/m Coef. On LE (C ) Coef. On H (C ) n R RMSE W/mo 1 2

2 2 2

2013 -9.04 1.07 1.17 365 92 16.68
2014 -3.54 0.98 1.17 365 91 15.74
2015 -10.42 1.12 1.32 365 93 14.52

satellite images were available after every 16 days Before going into detailed assessment of the
throughout the growing seasons. But the cloud free METRIC estimated ET  a single processed image of ETrF
images were hard to find at the beginning and end of the is presented in Figure 5. ETrF is evapotranspiration
growing season. Therefore, those images were cloud reference fraction synonymous with the commonly used
masked and then used in spline interpolation for daily ET crop coefficients [59] but it represents actual soil watera

estimates for the entire season. condition in field and is estimated by dividing ET  from

RESULTS water stress, actual vegetation growth conditions or

Energy Balance Closure and Uncertainty Analysis of EC between irrigated and non-irrigated agricultural fields in
Measurements: The uncertainty in ET measurements from our study region can easily be understood from Figure 5,
EC due to random errors or gap-filling errors were the darker green color fields apparently center pivot
determined using a Monte Carlo analysis [57] and are irrigated are non-water stressed and have higher ETrF and
reported in Table 3. The annual precipitation was well hence ET  while the dryland agricultural fields are in less
comparable to the annual ET in view of the dryland dark colors.
agricultural systems. The site-specific calibrations for IPNW wheat based

Evaluation of METRIC: The results of METRIC estimated successfully in the current study. The mixed field
ET  and  R   at EC flux foot print scale, was extracted by conditions, steep precipitation gradient and managementa n

selecting pixels (30 m each) in the upwind footprint practices in dryland farming of IPNW were the challenges
sources area of each EC flux tower site. The EC flux towers in calibrating METRIC for this region specifically.
footprints were determined using the methodology Therefore, we have to perform an extensive exercise of
described by [58] and it was ~100 m for each flux tower. model calibrations to come up with a solution for METRIC
The pixel values of the processed images, for R  and ET implementation  in  IPNW  region  specific  application.n a

at the observation footprint scale from the instantaneous The typical changes made were lowering the ETrF value
gridded outputs was compared with associated on-site to 0.85 for cold pixel and using clipped grass-based ET
flux measurements. The scatter plot comparison of instead of alfalfa-based ET . The grass-based ET  is
estimated and measured instantaneous R at four sites helpful in approximation of a near upper limit on ET inn

within the study region is presented in Figure 4. The drylands, constrained by energy availability. [21, 60]
estimate of instantaneous R  showed good agreement modified METRIC for high soil moisture conditions,n

compared with EC tower measurements at all the four [17]suggested that a downward adjustment in ETrF cold
locations within the study region. from 1.05 is essential for low vegetation or leaf

R is usually considered the most accurate senescence periods especially in high latitudes. As wen

measurement in EC energy flux measurements [50]. The lowered the ETrF of cold pixel from 1.05 to 0.85 in
difference in estimated and measured Rn would be calibration the implementation produced good results as
because of the uncertainty in the reflected radiances can be observed from figure 6. METRIC has successfully
recorded by the satellite due to aerodynamic processes been able to estimate ET fairly accurately. In the statistical
including wind speed, turbulence and buoyancy, all of analysis of estimated and measured ET the coefficient of
which are essentially invisible to satellites and impact the determination has always been above 0.85 and SEE below
transport of vapor and energy fluxes. However the 0.5 that indicates the strength of METRIC model in
METRIC advantage is that biases inherent to Rn, G and estimating regional ET . The study region has three
subcomponents of H are essentially cancelled by the precipitation zones with annual precipitation ranging from
subtraction of a bias-canceling estimate for H [18]. 250mm to 650mm (Figure 1). And the variation in SEE from

The result is an ET map with values ranging between high precipitation to low precipitation site is 0.48 to 0.31
near zero and near ET , for images with a range of bare or which is not much significant keeping in view a 400mmr

nearly bare soil and full vegetation cover. annual precipitation difference between those two sites.

a

a

METRIC with ET . ETrF fully capture the spatial trends inr

increased ET from intercepted water. The contrast

a

non-irrigated cropping system were performed

r

r r

a
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Table 3: Annual and seasonal evapotranspiration (ET) and precipitation and the associated uncertainties at each site during the measurement period
Site-year (Crop) ET (mm) Precipitation (mm)*

MSMN 2013 (SB) Annual 506 (±2) 584
MGS 237 (±1) 77
oMGS 269 (±2) 507

2014 (Pea) Annual 501 (±2) 536
MGS 227 (±1) 43
oMGS 274 (±2) 493

CAF-NT 2012 (WW) Annual 615(±3) 515
MGS 433 (±2) 156
oMGS 182 (±2) 359

2013 (SG) Annual 428 (±2) 539
MGS 258 (±2) 85
oMGS 170 (±2) 454

2014 (WW) Annual 510(±3) 455
MGS 349 (±1) 111
oMGS 161 (±2) 344

CAF-CT 2013 (SG) Annual 421 (±2) 539
MGS 215 (±2) 85
oMGS 206 (±1) 454

2014 (WW) Annual 507(±3) 455
MGS 348 (±2) 111
oMGS 159 (±2) 344

LIND 2012 Annual 219 (±3) 250†

2013 (WW) Annual 375(±3) 272
MGS 265 (±2) 85
oMGS 110 (±2) 187

2014 Annual 175 (±4) 175
Abbreviations: SB-spring barley, WW-winter wheat and SG-spring garbanzo.*

LIND was fallow during the crop year of 2012 and 2014, so no MGS was defined for these two years.†

Table 4: Statistical comparison of estimated and measured instantaneous net radiation (W m )2

R (Instantaneous)n

----------------------------------------------------------------------------------------------
Study site SEE BIAS R2

CFNT 34.28 -11.7 86
CFCT 25.41 -8.4 94
LIND 23 2.5 92
MSMN 17.32 2.7 97

Fig. 4: Scatter plot comparison of measured with estimated instantaneous net radiation
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Fig. 5: ETrF image showing the contrast between irrigated fields ET and non-irrigated fields ET at larger scale

Fig. 6: ET (mm day ) comparison between eddy covariance measurements and METRIC estimate for satellite overpass-1

dates
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Fig. 7: Seasonal ET comparison between METRIC estimate and eddy covariance measurements for all the four sites and
three growing seasons in our study region. The abbreviations on each seasonal curve shows the crop on ground
there. Abbreviations: SB-spring beans, SP-spring peas, WW-winter wheat, SG-spring garbanzo and SC-spring
canola

Table 5: Statistical analysis of seasonal ET estimates from METRIC and
eddy covariance measurement. Abbreviations: SEE-standard error
of the estimate, R -coefficient of determination and R-Pearson’s2

correlation coefficient
Site Years SEE(mm day ) R2 R1

CFNT 2013 0.56 0.78 0.89
2014 0.46 0.86 0.93
2015 0.50 0.85 0.92

CFCT 2013 0.56 0.70 0.83
2014 0.57 0.88 0.94
2015 0.73 0.84 0.92

MSMN 2013 0.73 0.70 0.83
2014 0.87 0.47 0.69
2015 0.82 0.61 0.78

LIND 2013 0.65 0.36 0.60
2014 0.35 0.31 0.55
2015 0.47 0.54 0.74

We estimated seasonal ET  based on the dailya

estimates from satellite overpass time using cubic spline
interpolation between images [45]. The cubic spline
interpolation is performed primarily on cloud free ETrF

images. The output of seasonal ETrF estimates resembles
K (crop-coefficient [9]) curve, which after multiplicationC

with seasonal ET can produce estimates of seasonal ET .r a

The comparison of EC ET measurements and seasonal
estimates of ET for the three growing seasons in 2013,
2014 and 2015 at all the four sites in our study region are
presented in Figure 7. Generally, the differences between
estimated and observed can be because of error in EC flux
measurements as well as biases in ET  estimation bya

METRIC. Overall the cubic spline interpolation has
performed well to produce these estimates as the
Pearson’s correlation coefficient (R) is positive and has
value above 0.90 for CFCT CFNT and a little lower value
for MSMN and LIND (Table 5). The coefficient of
determination for the analysis of ET on satellite overpass
dates was significantly higher (Figure 6) than the same for
seasonal estimates especially for LIND site. This means
that the biases in seasonal ET interpolated from satellite
overpass dates can be due to residual evaporation from
antecedent precipitation and uncertainty due to cloud



8  International Conference on Water Resources and Arid Environments (ICWRAE 8): 256-269th

266

filled images. For MSMN and LIND sites It can be (Ts) is developed in METRIC by employing the
observed from Figure 7 that the estimated and measured Calibration using Inverse Modeling at Extreme Conditions
ET agreed well during peak growing season (May-July) (CIMEC). The use of the CIMEC process excludes the
however the curves did not match well at the start and the effect of potential biases related to energy balance
end of the season. This bias may be because of two components, radiometric correction on the final estimated
reasons,  one  as  explained  the  uncertainty  due to ET. The calibration at hydrological extremes identified by
cloud-filling and the other may be because using the land surface temperature (LST) within the particular land
average seasonal wind direction to select the pixel for use category of the image is important because LST
comparison with EC measurements. Since most of the quickly senses water stress in crops than other indicators
precipitation is received at the start and after the end of like vegetation indices and it rapidly reflects the water
growing season (Table 3) therefore during this time of the stress conditions by an increase in temperature. 
season most of the images processed were cloudy and For results verification we had four flux towers
they were cloud masked and used in spline interpolation. deployed over 100 miles within a single scene setting of

The LIND station has arid climate and 50% less the Landsat8 satellite path 43 row 27. The remotely sensed
precipitation than that recorded at CFNT/CFCT, in ET was compared against the flux towers’ observed ET
addition to that WW residue is left on field in LIND to through eddy covariance, a most sophisticated and
conserve soil moisture. This practice may have introduced accurate method to observe ET. Estimated and observed
a bias in our image such that the soil evaporation ET showed a good argument. The RMSE was also
assigned from soil water balance model to the hot pixel encouragingly low and the Nash-Sutcliffe Efficiency
may have not been present actually in field, since the bias Coefficient showed that METIRC was 82-98% efficient in
is positive as well. The accuracy of ET estimates for estimating actual ET. However, this study employed some
different crops on ground with variable annual modifications in METRIC model implementation, including
precipitation for all the four sites reveals that METRIC can a decrease in ETrF value for cold anchor pixel and use of
estimate  regional  ET without the information about what clipped grass instead of alfalfa in standard reference ET
crop is on ground and soil-water conditions. from Penman Monteith method for typical drylands

METRIC has some significant advantages over setting of Washington State. This study is unique
conventional methods of estimating ET from crop because it used different boundary conditions in METRIC
coefficient  curves  in that neither crop development for its implementation in dryland regions to estimate ET
stages  nor  the  specific  crop type needs to be known fairly accurately in water stressed and mixed field
with  METRIC.  This study presented good example of conditions at large scale and the results are reliable
site-specific METRIC implementation that may be required because they were compared against the most accurate
to improve accuracy of estimates of ET from natural ground observations at four points within a single image
systems and illustrate the value of specific knowledge of domain. This study provided solution for ET estimation
native systems, principles of aerodynamic transfer and under water stressed conditions with high accuracy at
boundary layer development, soil physics and energy regional scale. This information can be used to develop
transfer limitations. water budgets, to monitor drought and to estimate

SUMMARY AND CONCLUSIONS engineers in order to make informed decisions regarding

We  estimated  actual  ET  from typical dryland However, METRIC requires trained experts who
farming in Washington State for three consecutive possess a strong background in energy balance and
growing seasons, 2013 onwards by implementing radiation physics and an adequate knowledge of
METRIC (a surface energy balance algorithm) with vegetation characteristics. It also requires high quality
satellite imagery. The actual ET was estimated as the hourly time scale data. 
residual of the surface energy balance. R  is computed by It is important to know the type of setting for whichn

subtracting all the outgoing radiant fluxes from all ET estimates are intended and the conditions from which
incoming radiant fluxes, G is determined from empirical the measurements are made. The precise determination of
relationship and is normally a small percentage of R . For large scale ET is a challenge and has important practicaln

H, a linear relationship between the near surface significance in climate change studies, water resource
temperature gradient (dT) and the surface temperature planning and management, agricultural water-saving, crop

agricultural water use for water managers and irrigation

water resource management.
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production and environmental issues. Large scale ET 10. Senay, G.B., M.E. Budde and J.P. Verdin, 2011.
information  can  be used in cropping system models for Enhancing the Simplified Surface Energy Balance
real time yield estimates and for decision support. Remote (SSEB) approach for estimating landscape ET:
sensing (RS) especially from satellites has the ability to Validation with the METRIC model. Agricultural
capture the actual field conditions and RS observations Water Management, 98(4): 606-618.
used with surface energy balance algorithms can provide 11. Yang, X., et al., 2013. Estimation of Daily Actual
widespread spatio-temporal actual ET estimates. Evapotranspiration from ETM+ and MODIS Data of
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